function [savePath]=readAllPos(pathToFile, subject,number,windowEMG,windowEEG,shiftEMG,shiftEEG,maxFile,...
threshold,pburgOrder,minEEGFreq,maxEEGFreq,pause,noLFsamples,EMGChannels,noSynergies)
% readAllPos reads the data for given subject and run and saves it with the
% according parameters; savePath is returned
% if the file exists, nothing is done
%fprintf('start read %s%i %s\n',subject,number,datestr(datetime('now')));
savePath=strcat(pathToFile,...
sprintf('../matlabData/%s%i%imsWindowEMG%isWindowEEG%imsShiftEMG%imsShiftEEGFreq%ito%iPause%ipBurg%inoSyn%iPos.mat',...
subject,number,windowEMG*1000,windowEEG,shiftEMG*1000,shiftEEG*1000,minEEGFreq,maxEEGFreq,pause,pburgOrder,noSynergies));
%only create file if it doesn't exist yet
if exist(savePath, 'file') ~= 2
fprintf(strcat(savePath,' not existing; creating\n'));
trainingDataEEGcell=cell(maxFile,1);
trainingDataEEGlfCell=cell(maxFile,1);
trainingDataEMGcell=cell(maxFile,1);
classesCell=cell(maxFile,1);
kin=cell([maxFile,1]);
% accumulate preprocessed data in cells
for i=1:maxFile
[sig, stat, params] = load_bcidat(strcat(pathToFile,...
sprintf('%s/%s_B100%i/%s_B1S00%iR0%i.dat',subject,subject,...
number,subject,number,i)));
tmpKin=csvread(strcat(pathToFile,...
sprintf('kin/%s_B1S00%iR0%i.txt',subject,number,i)),1,0);
[trainingDataEEGcell{i},trainingDataEEGlfCell{i},...
trainingDataEMGcell{i},kin{i}]=generateTrainingDataPos(sig,...
tmpKin(:,1:4),windowEMG,windowEEG,shiftEMG,shiftEEG,params,pburgOrder,...
minEEGFreq,maxEEGFreq,noLFsamples,EMGChannels);
classesCell{i}=stat.StimulusCode;
%fprintf('%ith file processed\n',i)
end
bci_sf=params.SamplingRate.NumericValue;
clear sig
% reformat to matrices
trainingDataEEG=cell2mat(trainingDataEEGcell);
trainingDataEEGlf=cell2mat(trainingDataEEGlfCell);
trainingDataEMG=cell2mat(trainingDataEMGcell);
classesMat=cell2mat(classesCell);
kinMat=cell2mat(kin);
clear trainingDataEEGcell trainingDataEMGcell classesCell kin
% reclassification according to EMG
classificationWithPause=classifyAccordingToEMG(trainingDataEMG,...
classesMat,shiftEMG,bci_sf,threshold,pause);
clear classesMat
% Smoother classifcation
smoothClassificationEMG=zeros(size(classificationWithPause));
for i=1:size(classificationWithPause,1)
smoothClassificationEMG(i)=round(mode(classificationWithPause(...
max(i-fix(bci_sf/1000),1):min(i+fix(bci_sf/1000),end))));
end
clear classificationWithPause
%adjust to length of EEG data
smoothClassificationEEG=zeros([size(trainingDataEEG,1),1]);
for i=1:size(smoothClassificationEEG,1)
smoothClassificationEEG(i)=mode(smoothClassificationEMG(fix(...
round(shiftEEG/shiftEMG*(i-1))+1):min(fix(round(...
shiftEEG/shiftEMG*i)),max(size(smoothClassificationEMG)))));
end
% drop data according to classification
trainingDataEEG=trainingDataEEG(smoothClassificationEEG~=-1,:,:);
trainingDataEEGlf=trainingDataEEGlf(smoothClassificationEEG~=-1,:,:);
trainingDataEMG=trainingDataEMG(smoothClassificationEMG~=-1,:);
classificationEMG=smoothClassificationEMG(smoothClassificationEMG~=-1);
classificationEEG=smoothClassificationEEG(smoothClassificationEEG~=-1);
% all created matching the size of EMGdata, if necessary downsampling
% has to be done when used
kinematics=kinMat(smoothClassificationEMG~=-1,:);
ae=trainAutoencoder(trainingDataEMG',noSynergies,'ShowProgressWindow',false);
synergiesAutoenc=encode(ae,trainingDataEMG')';
COEFF=pca(trainingDataEMG,'Centered',false);
synergiesPCA=trainingDataEMG/COEFF(:,1:noSynergies)';
[~,H]=nnmf(trainingDataEMG,noSynergies);
synergiesNNMF=trainingDataEMG*H';
clear smoothClassification i
save(savePath,'trainingDataEEG','trainingDataEEGlf','trainingDataEMG',...
'classificationEMG','classificationEEG','kinematics','synergiesAutoenc',...
'synergiesPCA','synergiesNNMF','-v7.3');
%fprintf('finished reading %s%i %s\n',subject,number,datestr(datetime('now')));
else
fprintf(strcat(savePath,' yet existing; nothing to do\n'));
end
end