\chapter{Results}
\label{chp:results}
\section{Classification}
\subsection{Comparison of methods of recording}
The different methods of recording (EEG, EMG and Low frequencies) also differ in the results. An ANOVA gives $p<0.001$ for all classifications done on 4 different movements and rest.
\begin{figure}
\centering
\includegraphics[width=0.9\textwidth]{pictures/results/classEEGemgLF.png}
\caption{EEG, EMG and LF compared based on classification accuracy with 5 classes}
\label{fig:classEEGemgLF}
\end{figure}
The mean classification accuracys for the default run are are given in Table~\ref{tab:accs}.
\begin{table}
\centering
\begin{math}
\begin{array}
{r||c|c|c|c}
&\text{EMG}&\text{EEG}&\text{LF}&\text{chance}\\\hline
mean&60.4&40.4&32.7&25\\
std&7.97&2.27&3.35\\
max&71.9&46.7&43.4\\
min&35.7&37.2&26.2
\end{array}
\end{math}
\caption{Accuracys for the different methods of recording in default configuration}
\label{tab:accs}
\end{table}
% \begin{itemize}
% \item[EMG:] $60.4\%$
% \item[EEG:] $40.4\%$
% \item[LF:] $32.7\%$
% \item[chance:] $25\%$
% \end{itemize}
\subsection{EMG}
In figure~\ref{fig:overviewEMG} the different settings for classification based on EMG-data are shown. Default has values as in \ref{mat:default}. The runs with pause leave out the data 1 second before the movement begins (cf. \ref{mat:pause}).
\begin{figure}
\centering
\includegraphics[width=\textwidth]{pictures/results/overviewEMG.png}
\caption{Classification with EMG-data}
\label{fig:overviewEMG}
\end{figure}
% \begin{figure}
% \centering
% \includegraphics[width=\textwidth]{pictures/results/pauseEMG.png}
% \caption{EMG-data without and with pause}
% \label{fig:pauseEMG}
% \end{figure}
When calculating an ANOVA on the data with and without pause we get $p<0.001$.
\subsection{EEG}
In figure~\ref{fig:overviewEEG} the different settings for classification based on EEG-data are shown. Default has values as in \ref{mat:default}. The runs with pause leave out the data 1 second before the movement begins (cf. \ref{mat:pause}). Runs with offset have an offset of 1 or 2 (cf. \ref{mat:offset}).
\begin{figure}
\centering
\includegraphics[width=\textwidth]{pictures/results/overviewEEG.png}
\caption{Classification with EEG-data}
\label{fig:overviewEEG}
\end{figure}
\subsection{Low Frequencies}
In figure~\ref{fig:overviewLF} the different settings for classification based on LowFrequency(LF)-data are shown. Default has values as in \ref{mat:default}. The runs with pause leave out the data 1 second before the movement begins (cf. \ref{mat:pause}). Runs with offset have an offset of 1 or 2 (cf. \ref{mat:offset}).
\begin{figure}
\centering
\includegraphics[width=\textwidth]{pictures/results/overviewLF.png}
\caption{Classification with LF-data}
\label{fig:overviewLF}
\end{figure}
\subsection{Trade-off parameter}
With a cross validation we compare the results for the soft-margin parameter for $\lambda=0.1,1,10$. The results are shown in figure~\ref{fig:svmCV}.%TODO
\section{Regression}
\subsection{Comparison of methods of recording}
\subsubsection{Velocities}
Predicting velocities from EEG, EMG and Low Frequencies is significantly\footnote{$p<0.001$} pairwise different (cf. figure~\ref{fig:corrEEGemgLF}). The corresponding $p$-Values of the ANOVA are given in table~\ref{tab:pCorr}.
\begin{figure}
\centering
\includegraphics[width=0.9\textwidth]{pictures/results/corrEEGemgLF.png}
\caption{EEG, EMG and LF compared based on prediction of velocities}
\label{fig:corrEEGemgLF}
\end{figure}
\begin{table}
\centering
\begin{math}
\begin{array}
{r||c|c|c}
&EEG&EMG&LF\\\hline
EEG&-&<0.001&<0.001\\
EMG&<0.001&-&<0.001\\
LF&<0.001&<0.001&-
\end{array}
\end{math}
\caption{$p$-Values for prediction of velocities from EEG, EMG or LF respectively}
\label{tab:pCorr}
\end{table}
\subsubsection{Positions}
Predicting positions from EEG, EMG and Low Frequencies is significantly\footnote{$p<0.001$} different, however not pairwise (cf. figure~\ref{fig:corrEEGemgLFpos}). Positions predicted from EMG and LF are not significantly different. The corresponding $p$-Values of the ANOVA are given in table~\ref{tab:pCorrPos}.
\begin{figure}
\centering
\includegraphics[width=0.9\textwidth]{pictures/results/corrEEGemgLFpos.png}
\caption{EEG, EMG and LF compared based on prediction of positions}
\label{fig:corrEEGemgLFpos}
\end{figure}
\begin{table}
\centering
\begin{math}
\begin{array}
{r||c|c|c}
&EEG&EMG&LF\\\hline
EEG&-&<0.001&<0.001\\
EMG&<0.001&-&0.34\\
LF&<0.001&0.34&-
\end{array}
\end{math}
\caption{$p$-Values for prediction of positions from EEG, EMG or LF respectively}
\label{tab:pCorrPos}
\end{table}
\subsection{Compare Prediction direct and via Synergies}
\subsubsection{Velocities}
There is a significant\footnote{$p<0.001$} difference between the predictions. The different synergies however have no significant difference ($p\approx0.87$). Also see figure~\ref{fig:directVia}.
\begin{figure}
\centering
\includegraphics[width=\textwidth]{pictures/results/predictKinfromEEG.png}
\caption{Velocities predicted from EEG direct or via Synergies}
\label{fig:directVia}
\end{figure}
\subsubsection{Positions}
There is a significant\footnote{$p<0.001$} difference between the predictions. The different synergies however have no significant difference ($p\approx0.85$). Also see figure~\ref{fig:directViaPos}.
\begin{figure}
\centering
\includegraphics[width=\textwidth]{pictures/results/predictPosfromEEG.png}
\caption{Positions predicted from EEG direct or via Synergies}
\label{fig:directViaPos}
\end{figure}
\subsection{EEG}
\subsubsection{Offset}
Offset makes no significant difference when predicting Synergies\footnote{Autoencoder: $p\approx0.81$, PCA: $p\approx0.77$, NMF: $p\approx0.60$} or velocities ($p\approx0.99$) or positions ($p\approx0.98$).
\subsubsection{Pause}
Whether there is a pause of 1s or only 0.5s doesn't make a significant difference for Autoencoder ($p\approx0.13$), PCA ($p\approx0.29$), NMF ($p\approx0.05$) or Velocities ($p\approx0.95$).
\subsection{EMG}
Using a offset or not does not make any difference since the offset is only applied on EEG-data (cf. \ref{mat:offset}).\\
Predicting synergies from EMG does not make sense since they are computed from EMG (cf. \ref{mat:synergies}).\\
\subsubsection{Pause}
There is no significant effect of the use of a pause when predicting velocities from EMG ($p\approx0.90$).
\subsection{Low Frequencies}
\subsubsection{Offset}
Offset makes no significant difference for predicting Autoencoder ($p\approx0.50$), PCA ($p\approx0.59$), NMF ($p\approx0.38$), velocities ($p\approx0.97$) or position ($p\approx1.0$).
\subsubsection{Pause}
There is no effect of pause for velocities from low frequencies ($p\approx0.73$).\\
However there is an effect for Autoencoder ($p<0.001$), PCA ($p<0.001$) and NMF ($p<0.001$).
The plot shows a better performance with a shorter pause and more data taken in (see figure~\ref{fig:lfToAutoencPause})
\begin{figure}
\centering
\includegraphics[width=\textwidth]{pictures/results/lfToAutoencPause.png}
\caption{Autoencoder data predicted from Low Frequencies}
\label{fig:lfToAutoencPause}
\end{figure}
% mean, std of correlation
%EEG -> EMG
%Autoenc kin/pos