addpath('/home/hohlochj/masterarbeit/usedMcode')
pathToFile='/nfs/wsi/ti/messor/hohlochj/origData/';
%pathToFile='/home/jph/Uni/masterarbeit/origData/';
maxFile=5;
threshold=10000; %EMG is classified as movement
EMGChannels={'AbdPolLo','Biceps','Triceps','FrontDelt','MidDelt','BackDelt'};
noSynergies=3;
allSubjects=true; %run all subjects and days or only one random day for one random subject
name='EEGtoEMGandAutoencToKinandVia'; %suffix for the output, has to be valid name for file (no space, /, ...)
windowEMG=0.2;
windowEEG=1;
shiftEMG=0.05;
shiftEEG=0.2;
eegOffset=0; %predict actions x*shiftEEG after EEG measurement
pburgOrder=250;
minEEGFreq=2;
maxEEGFreq=49;
pause=false;
noLFsamples=5;
ridgeParams=100;
k=10;
maxExpC=0;
maxPerClass=250;
poolObj=parpool(32);
[subjects,numbers]=namesAndNumbers(pathToFile);
numbersMat=cell2mat(numbers);
subjectsForNumbers=cell(size(numbersMat,2),1);
j=1;
for i=1:size(subjects,2)
subject=subjects{i};
for number=numbers{i}
subjectsForNumbers{j}=subject;
j=j+1;
end
end
j=j-1; %number of trial-days for all subjects
if allSubjects
% meanAccurancysEMG=zeros([j,1]);
% meanAccurancysEEG=zeros([j,1]);
% meanAccurancysLF=zeros([j,1]);
% maxCEMG=zeros([j,k,1]);
% maxCEEG=zeros([j,k,1]);
% maxCLF=zeros([j,k,1]);
% cmScaledEMG=zeros([j,5,5]);
% cmScaledEEG=zeros([j,5,5]);
% cmScaledLF=zeros([j,5,5]);
% maxRidgeParamIndexEEGkin=zeros([j,3,k]);
% maxRidgeParamIndexEMGkin=zeros([j,3,k]);
% maxRidgeParamIndexLFkin=zeros([j,3,k]);
% correlationEMGkin=zeros([j,3]); %x,y,angle
% correlationEEGkin=zeros([j,3]);
% correlationLFkin=zeros([j,3]);
% maxRidgeParamIndexEEGautoenc=zeros([j,noSynergies,k]);
% maxRidgeParamIndexEMGautoenc=zeros([j,noSynergies,k]);
% maxRidgeParamIndexLFautoenc=zeros([j,noSynergies,k]);
% correlationEMGautoenc=zeros([j,noSynergies]);
% correlationEEGautoenc=zeros([j,noSynergies]);
% correlationLFautoenc=zeros([j,noSynergies]);
% maxRidgeParamIndexEEGpca=zeros([j,noSynergies,k]);
% maxRidgeParamIndexEMGpca=zeros([j,noSynergies,k]);
% maxRidgeParamIndexLFpca=zeros([j,noSynergies,k]);
% correlationEMGpca=zeros([j,noSynergies]);
% correlationEEGpca=zeros([j,noSynergies]);
% correlationLFpca=zeros([j,noSynergies]);
% maxRidgeParamIndexEEGnnmf=zeros([j,noSynergies,k]);
% maxRidgeParamIndexEMGnnmf=zeros([j,noSynergies,k]);
% maxRidgeParamIndexLFnnmf=zeros([j,noSynergies,k]);
% correlationEMGnnmf=zeros([j,noSynergies]);
% correlationEEGnnmf=zeros([j,noSynergies]);
% correlationLFnnmf=zeros([j,noSynergies]);
maxRidgeParamIndexEEGemg=zeros([j,noSynergies,k]);
correlationEMGemg=zeros([j,noSynergies]);
maxRidgeParamIndexAutoencKin=zeros([j,noSynergies,k]);
correlationAutoencKin=zeros([j,noSynergies]);
correlationViaAutoenc=zeros([j,noSynergies]);
correlationViaPCA=zeros([j,noSynergies]);
correlationViaNNMF=zeros([j,noSynergies]);
viaCorrelationAutoenc=zeros(j,noSynergies);
viaCorrelationPCA=zeros(j,noSynergies);
viaCorrelationNNMF=zeros(j,noSynergies);
parfor j=1:size(numbersMat,2)
number=numbersMat(j);
subject=subjectsForNumbers{j};
savePath=readAll(pathToFile,subject,number,windowEMG,windowEEG,shiftEMG,shiftEEG,maxFile,threshold,pburgOrder,minEEGFreq,maxEEGFreq,pause,noLFsamples,EMGChannels,noSynergies);
% [meanAccurancysEMG(j),maxCEMG(j,:),cmScaledEMG(j,:,:)]=svmEciton(savePath,'EMG',k,maxExpC,maxPerClass,eegOffset);
% [meanAccurancysEEG(j),maxCEEG(j,:),cmScaledEEG(j,:,:)]=svmEciton(savePath,'EEG',k,maxExpC,maxPerClass,eegOffset);
% [meanAccurancysLF(j),maxCLF(j,:),cmScaledLF(j,:,:)]=svmEciton(savePath,'LF',k,maxExpC,maxPerClass,eegOffset);
% [correlationEMGkin(j,:),maxRidgeParamIndexEMGkin(j,:,:)]=ridgeCV(savePath,'EMG','kin',k,ridgeParams,eegOffset);
% [correlationEEGkin(j,:),maxRidgeParamIndexEEGkin(j,:,:)]=ridgeCV(savePath,'EEG','kin',k,ridgeParams,eegOffset);
% [correlationLFkin(j,:),maxRidgeParamIndexLFkin(j,:,:)]=ridgeCV(savePath,'LF','kin',k,ridgeParams,eegOffset);
% [correlationEMGautoenc(j,:),maxRidgeParamIndexEMGautoenc(j,:,:)]=ridgeCV(savePath,'EMG','Autoenc',k,ridgeParams,eegOffset);
% [correlationEEGautoenc(j,:),maxRidgeParamIndexEEGautoenc(j,:,:)]=ridgeCV(savePath,'EEG','Autoenc',k,ridgeParams,eegOffset);
% [correlationLFautoenc(j,:),maxRidgeParamIndexLFautoenc(j,:,:)]=ridgeCV(savePath,'LF','Autoenc',k,ridgeParams,eegOffset);
% [correlationEMGpca(j,:),maxRidgeParamIndexEMGpca(j,:,:)]=ridgeCV(savePath,'EMG','PCA',k,ridgeParams,eegOffset);
% [correlationEEGpca(j,:),maxRidgeParamIndexEEGpca(j,:,:)]=ridgeCV(savePath,'EEG','PCA',k,ridgeParams,eegOffset);
% [correlationLFpca(j,:),maxRidgeParamIndexLFpca(j,:,:)]=ridgeCV(savePath,'LF','PCA',k,ridgeParams,eegOffset);
% [correlationEMGnnmf(j,:),maxRidgeParamIndexEMGnnmf(j,:,:)]=ridgeCV(savePath,'EMG','NNMF',k,ridgeParams,eegOffset);
% [correlationEEGnnmf(j,:),maxRidgeParamIndexEEGnnmf(j,:,:)]=ridgeCV(savePath,'EEG','NNMF',k,ridgeParams,eegOffset);
% [correlationLFnnmf(j,:),maxRidgeParamIndexLFnnmf(j,:,:)]=ridgeCV(savePath,'LF','NNMF',k,ridgeParams,eegOffset);
[correlationEEGemg(j,:),maxRidgeParamIndexEEGemg(j,:,:)]=ridgeCV(savePath,'EEG','EMG',k,ridgeParams,eegOffset);
[correlationAutoencKin(j,:),maxRidgeParamIndexAutoencKin(j,:,:)]=ridgeCV(savePath,'Autoenc','kin',k,ridgeParams,eegOffset);
[correlationViaAutoenc(j,:),viaCorrelationAutoenc(j,:)]=ridgeCVvia(savePath,'EEG','Autoenc','kin',k,ridgeParams,eegOffset);
[correlationViaPCA(j,:),viaCorrelationPCA(j,:)]=ridgeCVvia(savePath,'EEG','PCA','kin',k,ridgeParams,eegOffset);
[correlationViaNNMF(j,:),viaCorrelationNNMF(j,:)]=ridgeCVvia(savePath,'EEG','NNMF','kin',k,ridgeParams,eegOffset);
fprintf('%s%i finished %s\n',subject,number,datestr(datetime('now')))
end
save(strcat(pathToFile,sprintf('../matlabData/%s_callAll-%s.mat',datestr(datetime('now')),name)));
else
j=fix(rand()*size(numbersMat,2)+1);
number=numbersMat(j);
subject=subjectsForNumbers{j};
savePath=readAll(pathToFile,subject,number,windowEMG,windowEEG,shiftEMG,shiftEEG,maxFile,threshold,pburgOrder,minEEGFreq,maxEEGFreq,pause,noLFsamples,EMGChannels,noSynergies);
% [meanAccurancysEMG,maxCEMG,cmScaledEMG(:,:)]=svmEciton(savePath,'EMG',k,maxExpC,maxPerClass,eegOffset);
% [meanAccurancysEEG,maxCEEG,cmScaledEEG(:,:)]=svmEciton(savePath,'EEG',k,maxExpC,maxPerClass,eegOffset);
% [meanAccurancysLF,maxCLF,cmScaledLF(:,:)]=svmEciton(savePath,'LF',k,maxExpC,maxPerClass,eegOffset);
% [correlationEMGkin,maxRidgeParamIndexEMGkin(:,:)]=ridgeCV(savePath,'EMG','kin',k,ridgeParams,eegOffset);
% [correlationEEGkin,maxRidgeParamIndexEEGkin(:,:)]=ridgeCV(savePath,'EEG','kin',k,ridgeParams,eegOffset);
% [correlationLFkin,maxRidgeParamIndexLFkin(:,:)]=ridgeCV(savePath,'LF','kin',k,ridgeParams,eegOffset);
% [correlationEMGautoenc,maxRidgeParamIndexEMGautoenc(:,:)]=ridgeCV(savePath,'EMG','Autoenc',k,ridgeParams,eegOffset);
% [correlationEEGautoenc,maxRidgeParamIndexEEGautoenc(:,:)]=ridgeCV(savePath,'EEG','Autoenc',k,ridgeParams,eegOffset);
% [correlationLFautoenc,maxRidgeParamIndexLFautoenc(:,:)]=ridgeCV(savePath,'LF','Autoenc',k,ridgeParams,eegOffset);
% [correlationEMGpca,maxRidgeParamIndexEMGpca(:,:)]=ridgeCV(savePath,'EMG','PCA',k,ridgeParams,eegOffset);
% [correlationEEGpca,maxRidgeParamIndexEEGpca(:,:)]=ridgeCV(savePath,'EEG','PCA',k,ridgeParams,eegOffset);
% [correlationLFpca,maxRidgeParamIndexLFpca(:,:)]=ridgeCV(savePath,'LF','PCA',k,ridgeParams,eegOffset);
% [correlationEMGnnmf,maxRidgeParamIndexEMGnnmf(:,:)]=ridgeCV(savePath,'EMG','NNMF',k,ridgeParams,eegOffset);
% [correlationEEGnnmf,maxRidgeParamIndexEEGnnmf(:,:)]=ridgeCV(savePath,'EEG','NNMF',k,ridgeParams,eegOffset);
% [correlationLFnnmf,maxRidgeParamIndexLFnnmf(:,:)]=ridgeCV(savePath,'LF','NNMF',k,ridgeParams,eegOffset);
[correlationEEGemg,maxRidgeParamIndexEEGemg(:,:)]=ridgeCV(savePath,'EEG','EMG',k,ridgeParams,eegOffset);
[correlationAutoencKin,maxRidgeParamIndexAutoencKin(:,:)]=ridgeCV(savePath,'Autoenc','kin',k,ridgeParams,eegOffset);
disp('begin')
[correlationViaAutoenc,viaCorrelationAutoenc]=ridgeCVvia(savePath,'EEG','Autoenc','kin',k,[100],eegOffset);
[correlationViaPCA,viaCorrelationPCA]=ridgeCVvia(savePath,'EEG','PCA','kin',k,[100],eegOffset);
[correlationViaNNMF,viaCorrelationNNMF]=ridgeCVvia(savePath,'EEG','NNMF','kin',k,[100],eegOffset);
fprintf('%s%i finished %s\n',subject,number,datestr(datetime('now')))
save(strcat(pathToFile,sprintf('../matlabData/%s_call%s%i-%s.mat',datestr(datetime('now')),subject,number,name)));
end
delete(poolObj)