\documentclass[a4paper,12pt]{scrartcl}
\usepackage[ngerman]{babel}
\usepackage{graphicx} %BIlder einbinden
\usepackage{amsmath} %erweiterte Mathe-Zeichen
\usepackage{amsfonts} %weitere fonts
\usepackage[utf8]{inputenc} %Umlaute & Co
\usepackage{hyperref} %Links
\usepackage{ifthen} %ifthenelse
\usepackage{enumerate}
\usepackage{pdfpages}
\usepackage{algpseudocode} %Pseudocode
\usepackage{dsfont} % schöne Zahlenräumezeichen
\usepackage{amssymb, amsthm} %noch stärker erweiterte Mathe-Zeichen
\usepackage{tikz} %TikZ ist kein Zeichenprogramm
\usetikzlibrary{trees,automata,arrows,shapes}
\pagestyle{empty}
\topmargin-50pt
\newcounter{aufgabe}
\def\tand{&}
\newcommand{\makeTableLine}[2][0]{%
\setcounter{aufgabe}{1}%
\whiledo{\value{aufgabe} < #1}%
{%
#2\tand\stepcounter{aufgabe}%
}
}
\newcommand{\aufgTable}[1]{
\def\spalten{\numexpr #1 + 1 \relax}
\begin{tabular}{|*{\spalten}{p{1cm}|}}
\makeTableLine[\spalten]{A\theaufgabe}$\Sigma$~~\\ \hline
\rule{0pt}{15pt}\makeTableLine[\spalten]{}\\
\end{tabular}
}
\def\header#1#2#3#4#5#6#7{\pagestyle{empty}
\begin{minipage}[t]{0.47\textwidth}
\begin{flushleft}
{\bf #4}\\
#5
\end{flushleft}
\end{minipage}
\begin{minipage}[t]{0.5\textwidth}
\begin{flushright}
#6 \vspace{0.5cm}\\
% Number of Columns Definition of Columns second empty line
% \begin{tabular}{|*{5}{C{1cm}|}}\hline A1&A2&A3&A4&$\Sigma$\\\hline&&&&\\\hline\end{tabular}\\\vspace*{0.1cm}
\aufgTable{#7}
\end{flushright}
\end{minipage}
\vspace{1cm}
\begin{center}
{\Large\bf Assignment #1}
{(Hand-in date #3)}
\end{center}
}
%counts the exercisenumber
\newcounter{n}
%Kommando für Aufgaben
%\Aufgabe{AufgTitel}{Punktezahl}
\newcommand{\Aufgabe}[2]{\stepcounter{n}
\textbf{Exercise \arabic{n}: #1} (#2 Punkte)\\}
\begin{document}
%\header{BlattNr}{Tutor}{Abgabedatum}{Vorlesungsname}{Namen}{Semester}{Anzahl Aufgaben}
\header{6}{}{2015-06-16}{Mobile Robots}{
\textit{Jan-Peter Hohloch}\\ \textit{Maximus Mutschler}
}{SS 15}{3}
\vspace{1cm}
\Aufgabe{Essential Matrix}{8}
\begin{enumerate}[(a)]
\item $^LT_R= \begin{pmatrix}
0.9811 &-0.1736 &0.0858& 0.1000\\
0.1730 &0.9848 &0.0151& 0\\
-0.0872& 0 &0.9962& 0\\
0 &0 &0 &1.0000
\end{pmatrix}\\
R= \begin{pmatrix}
0.9811 &-0.1736 &0.0858\\
0.1730 &0.9848 &0.0151\\
-0.0872& 0 &0.9962\\
\end{pmatrix}\\
t=\begin{pmatrix}
0.1&0&0
\end{pmatrix}\\
\left[t\right] = \begin{pmatrix}
0&0&0\\
0&0&-0.1\\
0&0.1&0
\end{pmatrix}\\
E= \left[t\right] \times R= \begin{pmatrix}
0&0&0\\
0.00872&0&-0.09962\\
0.01730&0.09848&0.00151\\
\end{pmatrix}
$
\item match if $n^T_R\cdot E\cdot n_L=0\\
n_L= \begin{pmatrix}
1.33,&0.54&1.0
\end{pmatrix}
$\begin{itemize}
\item $n_{R,1}\rightarrow \begin{pmatrix}
0.3&0.2&1.0
\end{pmatrix}
\begin{pmatrix}
0&0&0\\
0.00872&0&-0.09962\\
0.01730&0.09848&0.00151\\
\end{pmatrix}
\begin{pmatrix}
1.33,\\0.54\\1.0
\end{pmatrix}\\ =\begin{pmatrix}
0.3&0.2&1.0
\end{pmatrix} \begin{pmatrix}
0\\-0.0880224\\0.0776982
\end{pmatrix}
$\\
\item $n_{R,2}\rightarrow\begin{pmatrix}
-0.39&0.32&1.0
\end{pmatrix}
\begin{pmatrix}
0\\-0.0880224\\0.0776982
\end{pmatrix}
$\\
\item $n_{R,3}\rightarrow\begin{pmatrix}
-0.25&0.1&1.0
\end{pmatrix}
\begin{pmatrix}
0\\-0.0880224\\0.0776982
\end{pmatrix}$
\end{itemize}
werte falsch ... finde rechenfehler nicht.
\item $(K^{-1} p_R)^T\cdot E\cdot K^{-1}p_L = p_R^{T}\cdot K^{T^{-1}}\cdot E\cdot K^{-1} \cdot p_L\\
E= K^T\cdot F\cdot K \\
F= K^{T^{-1}}\cdot E\cdot K^{-1}$\\
K = calibration matrix of the cameras
\item
$
K=\begin{pmatrix}
500&0&320\\
0&500&240\\
0&0&1
\end{pmatrix}
$\\$
p_{R0}= K\cdot \begin{pmatrix}
0.3&0.2&1.0
\end{pmatrix}^T = \begin{pmatrix}
470\\
340\\
1
\end{pmatrix}\\
p_{R1}= K\cdot \begin{pmatrix}
-0.39&0.32&1.0
\end{pmatrix}^T= \begin{pmatrix}
125\\
400\\
1
\end{pmatrix}\\
p_{R2}=K\cdot \begin{pmatrix}
-0.25&0.1&1.0
\end{pmatrix}^T = \begin{pmatrix}
195\\
290\\
1
\end{pmatrix}
$
Epipolar Line: $ =E \cdot p_L^T $ wie bekomm ich daraus ne linie? %TODO \\
epipolatpunkt $E^T*e_2 =0$
\end{enumerate}
\Aufgabe{RANSAC}{4}
\begin{enumerate}[(a)]
\item $
k=\dfrac{log(1-p)}{log(1(1-\epsilon)^s)}\\
p=0.99\\
s_1=4, s_2=6, s_3=7\\
\begin{tabular}{c||llllllllll}
outlier ratio & 0.1 &0.2 &0.3 &0.4 &0.5 &0.6 &0.7 &0.8 &0.9 \\ \hline
s1=4& 5 & 9 & 17 & 34 & 72 & 178 & 567 & 2876 & 4650 \\
s2=5 & 6 & 12 &26 &57 &146 &448 &1893 &14389 &460515 \\
s3=7 & 8 &20 & 54 &163 &588 &2809 &21055 &359777 &46051700
\end{tabular}
$
\item A: 4 datapoints 150ns a iteration\\
B: 5 datapoints 40ns a iteration\\
$p=0.99\\
\eta = 0.7\\
k_A= 567\\
k_B=1893\\
k_A\cdot t_A=567\cdot 140ns=79380ns\\
k_B\cdot t_B=1893\cdot 40ns= 75720ns$\\
So the time for computation of B is smaller even with more points needed. So we choose B because of faster computationtime. If we are short for points however we should use A even though it takes more time.
\end{enumerate}
\Aufgabe{Stereo Vision}{8}
\begin{enumerate}
\item As higher $d_{max}$ gets as smaller $z_b$ can be. It has no influnce on the highest observable $z_b$\\
$z_{p,min}=\frac{f\cdot b}{d_{max}}=\frac{512px\cdot10cm}{64px}=80cm$
\item
$ d \sim N(d_{true},\sigma_d)$\\
$z_{p}(d)=\frac{f\cdot b}{d}$\\
TaylorApprox:\\$z_p(d)=z(d_{true})+z'(d_{true})(d-d_{true})=\frac{f\cdot b}{d_{true}}- \frac{f\cdot b}{d_{true}^2}(d-d_{true})= \frac{2f\cdot b}{d_{true}}-\frac{f\cdot b}{d_{true}^2}\cdot d\\
\sigma_z= a\cdot\sigma_d\cdot a = a^2\cdot \sigma_d = - \frac{f^2\cdot b^2\cdot \sigma_d}{d_{true}^4}= - \frac{f^2\cdot b^2\cdot \sigma_d}{\frac{f^4\cdot b^4}{z_p^4}}= \frac{z_p^4}{f^2\cdot b^2}\sigma_d \\
$schneller: $\sigma = f'(a)^2\cdot \sigma_{alt}
$
\item siehe b)
\item $f=512px \\
b=5cm\\
o_d=0.5cm\\
z_p=5m\\
\sigma_z= \frac{5^4}{512^2\cdot5^2}\cdot 0.5=\frac{5^2}{512^2\cdot 2}=0.0000477=4.77*10^{-5}cm
$
\item $o_{z}=5\\
b=\sqrt{\frac{z_p^4}{f^2\cdot o_z}\sigma_d} = \sqrt{\dfrac{5^3}{512^2\cdot2}}= 0.0154 cm
$
\end{enumerate}
\end{document}