#including cv
import pandas as pd
import numpy as np
from sklearn.cross_validation import KFold
def read(path="./datasets/train.csv"):
return(pd.read_csv(path, index_col='Date', parse_dates='Date'))
data=read()
cleanData=data[pd.notnull(data['Weight'])]
def cv(data=cleanData, n_folds=10):
"""split data in n_folds parts for cross validation
"""
kf=KFold(len(data), shuffle=True, n_folds=n_folds)
trainid=[]
testid=[]
for train, test in kf:
trainid.append(train)
testid.append(test)
data_train=[]
data_test=[]
for i in range(n_folds):
data_train.append(pd.DataFrame(data.iloc[j] for j in trainid[i]))
data_test.append(pd.DataFrame(data.iloc[j] for j in testid[i]))
return (data_train,data_test)
data_train, data_test=cv()
#print(data_test[0])