\documentclass[a4paper,12pt]{scrartcl}
\usepackage[ngerman]{babel}
\usepackage{graphicx} %BIlder einbinden
\usepackage{amsmath} %erweiterte Mathe-Zeichen
\usepackage{amsfonts} %weitere fonts
\usepackage[utf8]{inputenc} %Umlaute & Co
\usepackage{hyperref} %Links
\usepackage{ifthen} %ifthenelse
\usepackage{enumerate}
\usepackage{pdfpages}
\usepackage{algpseudocode} %Pseudocode
\usepackage{dsfont} % schöne Zahlenräumezeichen
\usepackage{amssymb, amsthm} %noch stärker erweiterte Mathe-Zeichen
\usepackage{tikz} %TikZ ist kein Zeichenprogramm
\usetikzlibrary{trees,automata,arrows,shapes}
\pagestyle{empty}
\topmargin-50pt
\newcounter{aufgabe}
\def\tand{&}
\newcommand{\makeTableLine}[2][0]{%
\setcounter{aufgabe}{1}%
\whiledo{\value{aufgabe} < #1}%
{%
#2\tand\stepcounter{aufgabe}%
}
}
\newcommand{\aufgTable}[1]{
\def\spalten{\numexpr #1 + 1 \relax}
\begin{tabular}{|*{\spalten}{p{1cm}|}}
\makeTableLine[\spalten]{A\theaufgabe}$\Sigma$~~\\ \hline
\rule{0pt}{15pt}\makeTableLine[\spalten]{}\\
\end{tabular}
}
\def\header#1#2#3#4#5#6#7{\pagestyle{empty}
\begin{minipage}[t]{0.47\textwidth}
\begin{flushleft}
{\bf #4}\\
#5
\end{flushleft}
\end{minipage}
\begin{minipage}[t]{0.5\textwidth}
\begin{flushright}
#6 \vspace{0.5cm}\\
% Number of Columns Definition of Columns second empty line
% \begin{tabular}{|*{5}{C{1cm}|}}\hline A1&A2&A3&A4&$\Sigma$\\\hline&&&&\\\hline\end{tabular}\\\vspace*{0.1cm}
\aufgTable{#7}
\end{flushright}
\end{minipage}
\vspace{1cm}
\begin{center}
{\Large\bf Assignment #1}
{(Hand-in date #3)}
\end{center}
}
%counts the exercisenumber
\newcounter{n}
%Kommando für Aufgaben
%\Aufgabe{AufgTitel}{Punktezahl}
\newcommand{\Aufgabe}[2]{\stepcounter{n}
\textbf{Exercise \arabic{n}: #1} (#2 Punkte)\\}
\begin{document}
%\header{BlattNr}{Tutor}{Abgabedatum}{Vorlesungsname}{Namen}{Semester}{Anzahl Aufgaben}
\header{6}{}{2015-06-16}{Mobile Robots}{
\textit{Jan-Peter Hohloch}\\ \textit{Maximus Mutschler}
}{SS 15}{3}
\vspace{1cm}
\Aufgabe{Essential Matrix}{8}
\begin{enumerate}[(a)]
\item $^LT_R= \begin{pmatrix}
0.9811 &-0.1736 &0.0858& 0.1000\\
0.1730 &0.9848 &0.0151& 0\\
-0.0872& 0 &0.9962& 0\\
0 &0 &0 &1.0000
\end{pmatrix}\\
R= \begin{pmatrix}
0.9811 &-0.1736 &0.0858\\
0.1730 &0.9848 &0.0151\\
-0.0872& 0 &0.9962\\
\end{pmatrix}\\
t=\begin{pmatrix}
0.1&0&0
\end{pmatrix}\\
\left[t\right] = \begin{pmatrix}
0&0&0\\
0&0&-0.1\\
0&0.1&0
\end{pmatrix}\\
E= \left[t\right] \times R= \begin{pmatrix}
0&0&0\\
0.00872&0&-0.09962\\
0.01730&0.09848&0.00151\\
\end{pmatrix}
$
\item match if $p^T_L\cdot E\cdot p_R=0\\
p_L= \begin{pmatrix}
0.46&0.27&1.00
\end{pmatrix}
$\begin{itemize}
\item $p_{R,1}\rightarrow \begin{pmatrix}
0.46&0.27&1.00
\end{pmatrix}
\begin{pmatrix}
0&0&0\\
0.00872&0&-0.09962\\
0.01730&0.09848&0.00151\\
\end{pmatrix}
\begin{pmatrix}
0.30\\0.20\\1.00
\end{pmatrix}
=0.0020492\rightarrow$ match\\
\item $p_{R,2}\rightarrow p_l\cdot E
\begin{pmatrix}
0.26\\0.21\\1.0
\end{pmatrix}=0.00040354
\rightarrow$ match\\
\item $p_{R,3}\rightarrow p_l\cdot E
\begin{pmatrix}
-0.25\\-0.10\\1.00
\end{pmatrix}=-0.040149
\rightarrow$ no match\end{itemize}
\item $(K^{-1} v_R)^T\cdot E\cdot K^{-1}v_L = v_R^{T}\cdot K^{T^{-1}}\cdot E\cdot K^{-1} \cdot v_L\\
E= K^T\cdot F\cdot K \\
F= K^{T^{-1}}\cdot E\cdot K^{-1}$\\
K = calibration matrix of the cameras
\item
$
K=\begin{pmatrix}
500&0&320\\
0&500&240\\
0&0&1
\end{pmatrix}
$\\$
p_{R0}= K\cdot \begin{pmatrix}
0.3&0.2&1.0
\end{pmatrix}^T = \begin{pmatrix}
470\\
340\\
1
\end{pmatrix}\\
p_{R1}= K\cdot \begin{pmatrix}
-0.39&0.32&1.0
\end{pmatrix}^T= \begin{pmatrix}
125\\
400\\
1
\end{pmatrix}\\
p_{R2}=K\cdot \begin{pmatrix}
-0.25&0.1&1.0
\end{pmatrix}^T = \begin{pmatrix}
195\\
290\\
1
\end{pmatrix}
$
Epipolar Line: $ =E \cdot p_L^T $ wie bekomm ich daraus ne linie? %TODO \\
epipolatpunkt $E^T*e_2 =0$
\end{enumerate}
\Aufgabe{RANSAC}{4}
\begin{enumerate}[(a)]
\item $
k=\dfrac{log(1-p)}{log(1(1-\epsilon)^s)}\\
p=0.99\\
s_1=4, s_2=6, s_3=7\\
\begin{tabular}{c||llllllllll}
outlier ratio & 0.1 &0.2 &0.3 &0.4 &0.5 &0.6 &0.7 &0.8 &0.9 \\ \hline
s1=4& 5 & 9 & 17 & 34 & 72 & 178 & 567 & 2876 & 4650 \\
s2=5 & 6 & 12 &26 &57 &146 &448 &1893 &14389 &460515 \\
s3=7 & 8 &20 & 54 &163 &588 &2809 &21055 &359777 &46051700
\end{tabular}
$
\item A: 4 datapoints 150ns a iteration\\
B: 5 datapoints 40ns a iteration\\
$p=0.99\\
\eta = 0.7\\
k_A= 567\\
k_B=1893\\
k_A\cdot t_A=567\cdot 140ns=79380ns\\
k_B\cdot t_B=1893\cdot 40ns= 75720ns$\\
So the time for computation of B is smaller even with more points needed. So we choose B because of a faster computation time. If we are short for points however we should use A even though it takes more time.
\end{enumerate}
\Aufgabe{Stereo Vision}{8}
\begin{enumerate}[(a)]
\item As $d_{max}$ increases $z_b$ decreases. So $d_{max}$ sets a lower bound. For $d$ approaching 0 $z_b$ approaches infinity, so there is no upper bound set by a fixed $d_{max}$\\
$z_{p,min}=\frac{f\cdot b}{d_{max}}=\frac{512px\cdot10cm}{64px}=\frac{2^9}{2^6}\cdot10cm=80cm$
\item
$ d \sim N(d_{true},\sigma_d)$\\
$z_{p}(d)=\frac{f\cdot b}{d}$\\
TaylorApprox:\\$z_p(d)=z(d_{true})+z'(d_{true})(d-d_{true})=\frac{f\cdot b}{d_{true}}- \frac{f\cdot b}{d_{true}^2}(d-d_{true})= \frac{2f\cdot b}{d_{true}}-\frac{f\cdot b}{d_{true}^2}\cdot d\\
\sigma_z= |A|\cdot \sigma_d = \frac{f\cdot b}{d_{true}^2}\cdot \sigma_d= \frac{f\cdot b}{\frac{f^2\cdot b^2}{z_p^2}}\cdot \sigma_d= \frac{z_p^2}{f\cdot b}\sigma_d \\
% $faster: $\sigma = z'(d_{true})|\cdot \sigma_{alt}
$
\item see b)
\item $f=512px \\
b=5cm\\
\sigma_d=0.5px\\
z_p=500cm\\
\sigma_z= \frac{500^2}{512\cdot5}\cdot 0.5=\frac{500^2}{512\cdot 2}\approx 244.1cm
$
\item $\sigma_{z}=5cm\\
b=\frac{z_p^2}{f\cdot o_z}\sigma_d= \frac{500^2}{512\cdot5}\cdot \sigma_d= 97.65625\frac{cm}{px}\cdot\sigma_d$\\
for $\sigma_d=0.5px:\ b=97.65625\frac{cm}{px}\cdot 0.5px=48.828125cm$
\end{enumerate}
\end{document}