#!/usr/bin/python3
import numpy as np
import matplotlib.pyplot as plt
import random as rand
from sklearn import svm
n=500
X=[]
Y=[]
for i in range(n):
X.append(rand.uniform(0,2))
Y.append(X[i]**2+rand.gauss(0,1))
plt.plot(X,Y,'x')
#clf=svm.SVR()
#clf.fit(X.T,Y)
#plt(X,clf.predict(X),'o')
plt.show()