\documentclass[a4paper,12pt]{scrartcl}
\usepackage[ngerman]{babel}
\usepackage{graphicx} %BIlder einbinden
\usepackage{amsmath} %erweiterte Mathe-Zeichen
\usepackage{amsfonts} %weitere fonts
\usepackage[utf8]{inputenc} %Umlaute & Co
\usepackage{hyperref} %Links
\usepackage{ifthen} %ifthenelse
\usepackage{enumerate}
\usepackage{algpseudocode} %Pseudocode
\usepackage{dsfont} % schöne Zahlenräumezeichen
\usepackage{amssymb, amsthm} %noch stärker erweiterte Mathe-Zeichen
\usepackage{tikz} %TikZ ist kein Zeichenprogramm
\usetikzlibrary{trees,automata,arrows,shapes}
\pagestyle{empty}
\topmargin-50pt
\newcounter{aufgabe}
\def\tand{&}
\newcommand{\makeTableLine}[2][0]{%
\setcounter{aufgabe}{1}%
\whiledo{\value{aufgabe} < #1}%
{%
#2\tand\stepcounter{aufgabe}%
}
}
\newcommand{\aufgTable}[1]{
\def\spalten{\numexpr #1 + 1 \relax}
\begin{tabular}{|*{\spalten}{p{1cm}|}}
\makeTableLine[\spalten]{A\theaufgabe}$\Sigma$~~\\ \hline
\rule{0pt}{15pt}\makeTableLine[\spalten]{}\\
\end{tabular}
}
\def\header#1#2#3#4#5#6#7{\pagestyle{empty}
\begin{minipage}[t]{0.47\textwidth}
\begin{flushleft}
{\bf #4}\\
#5
\end{flushleft}
\end{minipage}
\begin{minipage}[t]{0.5\textwidth}
\begin{flushright}
#6 \vspace{0.5cm}\\
% Number of Columns Definition of Columns second empty line
% \begin{tabular}{|*{5}{C{1cm}|}}\hline A1&A2&A3&A4&$\Sigma$\\\hline&&&&\\\hline\end{tabular}\\\vspace*{0.1cm}
\aufgTable{#7}
\end{flushright}
\end{minipage}
\vspace{1cm}
\begin{center}
{\Large\bf Sheet #1}
{(Hand in #3)}
\end{center}
}
%counts the exercisenumber
\newcounter{n}
%Kommando für Aufgaben
%\Aufgabe{AufgTitel}{Punktezahl}
\newcommand{\Aufgabe}[2]{\stepcounter{n}
\textbf{Exercise \arabic{n}: #1} (#2 Points)\\}
\begin{document}
%\header{BlattNr}{Tutor}{Abgabedatum}{Vorlesungsname}{Namen}{Semester}{Anzahl Aufgaben}
\header{1}{}{2015-04-22}{Intelligent Systems I}{\textit{Maximus Mutschler}\\ \textit{Jan-Peter Hohloch}
}{SS 15}{4}
\vspace{1cm}
\Aufgabe{Python}{4}
done\\
\Aufgabe{Poker}{2+2+4=8}
\begin{enumerate}[1.]
\item possible hands: ${52 \choose 5}=2598960$\\
hands with exaclty one pair: ${13\choose 1}\cdot{4\choose 2}\cdot {12\choose 3}\cdot 4^3=1098240$\\
$\mathds{P}(1\ pair)=\frac{1098240}{2598960}=\frac{352}{833}\approx 0.423$
\item hands with exaclty two pairs: ${13\choose 2}{4\choose 2}^2\cdot 11\cdot 4=123552$\\
$\mathds{P}(2\ pairs)=\frac{123552}{2598960}=\frac{198}{4165}\approx 0.0475$
\item \begin{enumerate}[(a)]
\item possible hands without Spades: ${39\choose 5}=575757$\\
hands with exaclty two pairs without Spades: ${13\choose 2}{3\choose 2}^2\cdot 11\cdot 3=23166$\\
$\mathds{P}(2\ pairs|\neg Spades)=\frac{23166}{575757}=\frac{198}{4921}\approx 0.0402$\\
one pair:\\
${13\choose 1}{3\choose 2}{12 \choose 3}\cdot 3^3=231660$\\
$\mathds{P}(1\ pair|\neg Spades)=\frac{231660}{575757}=\frac{1980}{4921}\approx 0.402$
\item \begin{enumerate}[(i)]
\item $A:=1\ pair,\ B:=\neg Spades$\\
$P(A|B)=\frac{P(B|A)P(A)}{P(B)}$\\
$P(A)=\frac{352}{833},\ P(B)=\frac{39}{52}\cdot\frac{38}{51}\cdot\frac{37}{50}\cdot\frac{36}{49}\cdot\frac{35}{48}=\frac{2109}{9520}$\\
$P(B|A)=1-P(\neg B| A)=1-\left(\frac{1}{4}+\frac{3}{4}\frac{1}{4}+\left(\frac{3}{4}\right)^2\frac{1}{4}+\left(\frac{3}{4}\right)^3\frac{1}{4}+\left(\frac{3}{4}\right)^4\frac{1}{3}\right)=1-\frac{101}{128}=\frac{27}{128}\approx 0.211$\\
$P(A|B)=\frac{\frac{27}{128}\cdot \frac{352}{833}}{\frac{2109}{9520}}=\frac{1980}{4921}\approx 0.402$
\item $A:=2\ pairs,\ P(A)=\frac{198}{4165}$, B as above\\
$P(B|A)=1-\left(\frac{1}{4}+\frac{3}{4}\cdot\frac{1}{4}+\left(\frac{3}{4}\right)^2\cdot\frac{1}{4}+\left(\frac{3}{4}\right)^3\cdot\frac{1}{3}+\left(\frac{3}{4}\right)^3\frac{2}{3}\cdot\frac{1}{3}\right)=\frac{3}{16}$\\
$P(A|B)=\frac{\frac{3}{16}\cdot \frac{198}{4165}}{\frac{2109}{9520}}=\frac{198}{4921}\approx0.0402$
\end{enumerate}
\end{enumerate}
\end{enumerate}
\pagebreak
\Aufgabe{Random Variables}{2+2+2=6}
\begin{enumerate}
\item $F\left(\frac{3}{2}\right)-F\left(\frac{1}{2}\right)=\frac{3}{4}-\frac{1}{4}=\frac{1}{2}$
\item
$x^2<x\Leftrightarrow x\in (0,1)$ \\
$\Rightarrow \mathds{P}(Y<X)=\mathds{P}(0\leq X<1)=F\left(1\right)-F\left(0\right)=\frac{1}{2}-0=\frac{1}{2}$\\
\item $
F_z(z) = F_x(g^{-1}(z))\\
g(X)=\sqrt{X} \\ g^{-1}(z)= z^2\\
F_z(z)= \frac{1}{2} z^2\\
F_Z(x)=\begin{cases}
0 & if\ z<0\\
\frac{1}{2} z^2 & if\ 0\leq z\leq \sqrt2\\
1 & if\ z>\sqrt2
\end{cases}$%TODO: adjust intervals dazu sagt das Beispiel nichts...
\\ reference: http://math.arizona.edu/$\sim$jwatkins/f-transform.pdf
\end{enumerate}
\Aufgabe{Keep Rolling!}{4}
\begin{align*}
\mathds{E}(X)
&=\sum\limits_{i=1}^{\infty} i\cdot p\cdot \left(1-p\right)^{i-1}\\
&=p\cdot\sum\limits_{i=1}^{\infty} i\left(1-p\right)^{i-1}\\
&=p\cdot \frac{d}{dp}\left[ -\sum\limits_{i=0}^{\infty}\left(1-p\right)^i\right] &\text{(geometric series)}\\
&=p\cdot \frac{d}{dp}\left(-\frac{1}{p}\right)\\
&=p\cdot \frac{1}{p^2}\\
&=\frac{1}{p}
\end{align*}
$\Rightarrow\mathds{E}(X)=\frac{1}{p}=\frac{1}{\frac{1}{6}}=6$
\end{document}