Newer
Older
abgabensammlungSS15 / is / UB4 / ISUB4.tex
@Jan-Peter Hohloch Jan-Peter Hohloch on 2 Jun 2015 11 KB IS: corr
\documentclass[a4paper,12pt]{scrartcl}
\usepackage[ngerman]{babel}
\usepackage{graphicx} %BIlder einbinden
\usepackage{amsmath} %erweiterte Mathe-Zeichen
\usepackage{amsfonts} %weitere fonts
\usepackage[utf8]{inputenc} %Umlaute & Co
\usepackage{hyperref} %Links
\usepackage{ifthen} %ifthenelse
\usepackage{enumerate}
\usepackage{listings}
\lstset{language=Python}

\usepackage{algpseudocode} %Pseudocode
\usepackage{dsfont} % schöne Zahlenräumezeichen
\usepackage{amssymb, amsthm} %noch stärker erweiterte Mathe-Zeichen
\usepackage{tikz} %TikZ ist kein Zeichenprogramm
\usetikzlibrary{trees,automata,arrows,shapes}

\pagestyle{empty}


\topmargin-50pt

\newcounter{aufgabe}
\def\tand{&}

\newcommand{\makeTableLine}[2][0]{%
  \setcounter{aufgabe}{1}%
  \whiledo{\value{aufgabe} < #1}%
  {%
    #2\tand\stepcounter{aufgabe}%
  }
}

\newcommand{\aufgTable}[1]{
  \def\spalten{\numexpr #1 + 1 \relax}
  \begin{tabular}{|*{\spalten}{p{1cm}|}}
    \makeTableLine[\spalten]{A\theaufgabe}$\Sigma$~~\\ \hline
    \rule{0pt}{15pt}\makeTableLine[\spalten]{}\\
  \end{tabular}
}

\def\header#1#2#3#4#5#6#7{\pagestyle{empty}
\begin{minipage}[t]{0.47\textwidth}
\begin{flushleft}
{\bf #4}\\
#5
\end{flushleft}
\end{minipage}
\begin{minipage}[t]{0.5\textwidth}
\begin{flushright}
#6 \vspace{0.5cm}\\
%                 Number of Columns    Definition of Columns      second empty line
% \begin{tabular}{|*{5}{C{1cm}|}}\hline A1&A2&A3&A4&$\Sigma$\\\hline&&&&\\\hline\end{tabular}\\\vspace*{0.1cm}
\aufgTable{#7}
\end{flushright}
\end{minipage}
\vspace{1cm}
\begin{center}
{\Large\bf Sheet #1}

{(Hand in #3)}
\end{center}
}



%counts the exercisenumber
\newcounter{n}

%Kommando für Aufgaben
%\Aufgabe{AufgTitel}{Punktezahl}
\newcommand{\Aufgabe}[2]{\stepcounter{n}
    \textbf{Exercise \arabic{n}: #1} (#2 Points)\\}

\newcommand{\norm}[1]{\left \| #1 \right \|}
\DeclareMathOperator{\minimize}{minimize}
\DeclareMathOperator{\maximize}{maximize}
\newcommand{\real}{\mathbb{R}}
\newcommand{\blasso}{\beta^{\mathrm{LASSO}}}
\newcommand{\bzero}{\beta^0}
\newcommand{\bLS}{\hat{\beta}^{\mathrm{LS}}}
\DeclareMathOperator*{\argmin}{arg\,min}

\newcommand{\textcorr}[1]{\textcolor{red}{#1}}
\newenvironment{corr}{\color{red}}{\color{black}\newline}
\newcommand{\ok}{\begin{corr}
            $\checkmark$
        \end{corr}}


\begin{document}
    %\header{BlattNr}{Tutor}{Abgabedatum}{Vorlesungsname}{Namen}{Semester}{Anzahl Aufgaben}
    \header{4}{}{2015-05-21}{Intelligent Systems I}{\textit{Maximus Mutschler}\\ \textit{Jan-Peter Hohloch}
    }{SS 15}{2}
    \vspace{1cm}
    \Aufgabe{LASSO \& $l_0$}{30}
        \begin{enumerate}
            \item \begin{enumerate}
                \item \includegraphics[width=.4\textwidth]{ghard.png}\textcorr{\checkmark}
                \item \begin{align*}
                    \hat{\beta}^{LS}&=\left(X^TX\right)^{-1}X^T\mathbf{y}\\
                    &=\left(nI_{n\times n} \right)^{-1}X^T\mathbf{y}\\
                    &=\frac{1}{n}\cdot I_{n\times n}X^T\mathbf{y}\\
                    &=\frac{1}{n}\cdot X^T\mathbf{y}\textcorr{\checkmark}
                \end{align*}
                \item \begin{math}
                     \bzero(\lambda) := \mathrm{arg \, min}_{\beta} \frac{1}{n} \norm{Y - X \beta}_2^2 + \lambda \norm{\beta}_0 ,\\
                         =\mathrm{arg \, min}_{\beta} \underbrace{\frac{1}{n} Y^{T}Y}_{constant}- \frac{2}{n}Y^{T}X\beta+\norm{\beta}^2+\lambda \norm{\beta}_0 \\
                         =\mathrm{arg \, min}_{\beta} -\frac{2}{n}Y^{T}X\beta+\norm{\beta}^2+\lambda \norm{\beta}_0 \\
                             =\textcorr{\textbf{arg }}\mathrm{min}_{\beta} \sum^p_{i=1}-\frac{2}{n}Y^{T}_iX_i\beta_i+\beta_i^2+\lambda \cdot \begin{cases}
                      0,   \beta_i =0\\
                      1,  \beta_i \neq 0\\
                    \end{cases} %0 oder eins
                    \\\text{The problem  can be simplified to one}\\ \text{ some element representing all others}\\
                           L_i=\begin{cases}
                      0,   \beta_i =0\\
                      -\frac{2}{n}Y^{T}_iX_i\beta_i+\beta_i^2+\lambda ,  \beta_i \neq 0\\
                    \end{cases} \\
                         \\\frac{d L_i }{d \beta}= -\frac{2}{n} X_i^TY_i +2 \beta_i \overset{!}{=} 0\\
                         \beta_i= \frac{1}{n} X^T_iY_i\\
                         \text{$\beta_i$ in $L_i$,$\beta_i \neq 0$, determine for which $\lambda$ $\beta_i =0$}\\
                         0=  -2\beta_i^2+\beta_i^2 +\lambda\\
                         \lambda=|\beta_i|^2\\
                        \lambda =  \left|\frac{1}{n} X^T_iY_i\right|^2 \\
                         \sqrt{\lambda} = \left|\frac{1}{n} X^T_iY_i\right| \\
                         \bzero(\lambda) = \frac{1}{n} X^T_iY_i \cdot
                         \begin{cases}
                      0,  |X^T_iY_i| =\sqrt{\lambda}\\
                      1,  |X^T_iY_i|><\sqrt{\lambda}\\
                    \end{cases}
                     \end{math}
                \begin{corr}
                    \begin{align*}
                        \beta^0(\lambda)&=\argmin_\beta \mathcal{L}(\beta)\\
                        &= \argmin_\beta \frac{1}{n}\left(Y-X\beta\right)^T\left(Y-X\beta\right)+\sum\limits_{i=1}^p\lambda \mathds{1}_{\{\beta_i\not=0\}}\\
                        &= \argmin_\beta \frac{1}{n}\left(-2Y^TX\beta +n\beta^T\beta\right)+\sum\limits_{i=1}^p\lambda \mathds{1}_{\{\beta_i\not=0\}}\\
                        &=\argmin_\beta \sum\limits_{i=1}^p \underbrace{-\frac{2}{n}\left(Y^TX\right)_i\beta_i+|\beta_i|^2+\lambda\mathds{1}_{\{\beta_i\not=0\}}}_{=:\mathcal{L}_i\left(\beta_i\right)}\\
                        \beta_i^0&=\argmin_{\beta_i} \mathcal{L}_i(\beta_i)\\
                        \frac{2}{n}\left(Y^TX\right)_i\beta_i+|\beta_i|^2&= \beta_i\left(\beta_i-\frac{2}{n}\left(Y^TX)_i\right)\right)\\
                        \text{solution: }& \text{minimum at } \frac{1}{n}\left(Y^TX\right)_i\\
                        \Rightarrow \mathcal{L}_i\left(\tilde{\beta_i}\right) &= \lambda \mathds{1}_{\{\beta_i\not=0\}} - \left(\frac{1}{n}\left(Y^TX\right)_i\right)^2\\
                        (assume\ \beta_i\not=0) &= \lambda -\left(\frac{1}{n}\left(Y^TX\right)_i\right)^2\\
                        \min_{\beta_i}\mathcal{L}_i\left(\beta_i\right)&=\min\left(\underbrace{\min_{\beta_i\not=0}\mathcal{L}_i\left(\beta_i\right)}_{\lambda-z_i^2},\underbrace{\mathcal{L}_i(0)}_{=0}\right)\\
                        \lambda-z_i^2\leq 0 &\Leftrightarrow \sqrt{\lambda}\leq z_i\\
                        \Rightarrow \beta_i^0(\lambda) &= z_i\mathds{1}_{\{|z_i|\geq\sqrt{\lambda}\}}=g_{hard,\lambda}(z_i)
                    \end{align*}
                \end{corr}
            \end{enumerate}
            \item \begin{enumerate}
                \item \includegraphics[width=0.4\textwidth]{gsoft.png}
                \item \begin{math}\blasso(\lambda) := \mathrm{arg \, min}_{\beta} \frac{1}{n} \norm{Y - X \beta}_2^2 + \lambda \norm{\beta}_1 ,\\
                     =\mathrm{arg \, min}_{\beta} \underbrace{\frac{1}{n} Y^{T}Y}_{constant}- \frac{2}{n}Y^{T}X\beta+\norm{\beta}^2+\lambda \norm{\beta}_1 \\
                     =\mathrm{arg \, min}_{\beta} -\frac{2}{n}Y^{T}X\beta+\norm{\beta}^2+\lambda \norm{\beta}_1 \\
                         =\mathrm{min}_{\beta} \sum^p_{i=1}-\frac{2}{n}Y^{T}_iX_i\beta_i+\beta_i^2+\lambda |\beta_i|\\
                       \text{Minimize for a fixed i}\\\text{The problem  can be simplified to the sum of its parts}\\
                       L_i=-\frac{2}{n}Y^{T}_iX_i\beta_i+\beta_i^2+\lambda |\beta_i|\\
                       \text{ $Y^{T}_iX_i >0$ subjects to $\beta_i \geq 0$}\\\text{and vice versa $Y^{T}_iX_i \leq0$ subjects to $\beta_i \leq 0$ }\\\\
                       \text{Case 1: $Y^{T}_iX_i >0$ and $\beta_i \geq 0$}\\
                      \frac{dL_i}{d\beta} =-\frac{2}{n}Y^{T}_iX_i+2\beta_i+\lambda \overset{!}{=} 0\\
                      \beta_i = \frac{1}{n}Y^{T}_iX_i-\frac{\lambda}{2}\\
                      \text{this is only feasible if the right-hand side is nonnegative}\\
                     \blasso_i(\lambda) =\left(\frac{1}{n}Y^{T}_iX_i-\frac{\lambda}{2}\right)^+
                    \\= sgn(\frac{1}{n}Y^{T}_iX_i)% den schritt verstehe ich nicht
                    \cdot\left(\left|\frac{1}{n}Y^{T}_iX_i\right|-\frac{\lambda}{2}\right)^+\\
                    \text{Case 2: $Y^{T}_iX_i \leq0$ and $\beta_i \leq 0$}\\
                    \text{leads obviously to the same equation, so it's proven}
                     % quelle http://stats.stackexchange.com/questions/17781/derivation-of-closed-form-lasso-solution
                  \end{math}\\
                 We needed more than 12 hours to solve these equations. Please be aware of the fact that we are computer scientist with only a basic math education. We are not mathematics students!
                \begin{corr}
                    \begin{align*}
                        \mathcal{L}(\beta)&=\argmin_\beta \frac{1}{n}\left|\left|Y-X\beta\right|\right|^2+\lambda ||\beta||_1\\
                        &= \argmin_\beta \frac{1}{n}\left(-2Y^TX\beta +n\beta^T\beta\right)+\lambda \sum\limits_{i=1}^p|\beta_i|\\
                        &=\argmin_\beta \sum\limits_{i=1}^p \underbrace{-2z_i\beta_i+|\beta_i|^2+\lambda|\beta_i|}_{=:\mathcal{L}_i}
                    \end{align*}
                    \begin{align*}
                        \beta_i\geq 0: & \mathcal{L}_i(\beta_i)&=\beta_i\left(\beta_i-2z_i+\lambda\right)\\
                        &\tilde{\beta}_i&=\begin{cases}
                            z_i-\frac{\lambda}{2} & if\ z_i\geq \frac{\lambda}{2}\\
                            0 & else
                        \end{cases}\\
                        \beta_i\leq 0: & \mathcal{L}_i(\beta_i)&=\beta_i\left(\beta_i-2z_i-\lambda\right)\\
                        &\tilde{\beta}_i&=\begin{cases}
                            z_i+\frac{\lambda}{2} & if\ z_i\leq -\frac{\lambda}{2}\\
                            0 & else
                        \end{cases}\\
                        \Rightarrow & \beta_i^{LASSO}&=g_{soft,\frac{\lambda}{2}}\left(z_i\right)
                    \end{align*}
                \end{corr}
            \end{enumerate}
        \end{enumerate}
    \Aufgabe{LASSO}{70}
        \begin{lstlisting}
def printOutput(lm_, Xtest_, ytest_):   # lm_ = instance of linear_model.xxx(xxx)
yhat = lm_.predict(Xtest_)
plt.figure(1)
plt.title("Regression Weights")
plt.plot(lm_.coef_.T)
plt.figure(2)
plt.title('yhat vs ytest')
plt.plot(ytest_, yhat, 'ro')
plt.show()
print('R2 :', lm_.score(Xtest_,ytest_))
print('Gene with Strongest Coefficient :' , abs(lm_.coef_).argmax())
if hasattr(lm_, 'alpha'): print('Used Lambda :', lm.alpha)
if hasattr(lm_, 'alpha_'): print('Lambda_ResultOfCV :', lm.alpha_ )
        \end{lstlisting}
        \begin{enumerate}[a)]
            \item What should happen if you tried to apply linear regression without any regularizer on this data set?
                \begin{itemize}
                    \item many non-zero weights
                    \item possible large weights
                    \item \textcorr{the solution is not unique}
                \end{itemize}
            \item Does this happen with the function \_linear\_model.LinearReagression()\_ ?
            \begin{itemize}
                \item yes (only 1 zero for 4710, 3290)
                \item no (largest weight for 4710 ~0.0227, for 3290 ~0.0477)
            \end{itemize}
        \end{enumerate}
        \includegraphics[width=0.49\textwidth]{outputLinear.png}
        \includegraphics[width=0.49\textwidth]{outputRidge.png}\\
        \includegraphics[width=\textwidth]{outputLasso.png}\\
        with the following Code:
        \begin{lstlisting}
lm = linear_model.RidgeCV(cv=10)  ### CHANGE THIS LINE ###
lm.n_jobs=-1
lm.fit(Xtrain, ytrain);
#-------------------------------------------------------------
lm = linear_model.LassoCV(cv=10) ### CHANGE THIS LINE ###
lm.n_jobs=-1
lm.max_iter=1000
lm.fit(Xtrain, ytrain)

printOutput(lm, Xtest, ytest)   ### PROVIDE THE OUTPUT ###

print('Regression Coefficient of Gene 5954 : ', lm.coef_[5954])
        \end{lstlisting}
        \textcorr{has to be 5953}\\
        \textcorr{\textbf{other gene missing}}
\end{document}