library(testthat)
monkeydat <- data.frame(Monkey=c("DAN", "ART", "CAU", "DOR", "VIO", "ARI"),
NumTrials=c(56689, 50985, 61142, 49608, 43041, 55407),
NumWordsLearned=c(308, 125, 112, 121, 81, 87),
NumNonwordsPresented=c(7832, 7832, 7832, 7832, 7832, 7832),
GeneralAccuracy=c(79.81, 73.41, 72.43, 73.15, 71.55, 71.14),
WordAccuracy=c(80.01, 74.83, 73.15, 79.26, 76.75, 75.38),
NonwordAccuracy=c(79.61, 72.00, 71.72, 67.06, 66.33, 66.90),
stringsAsFactors=F)
Resample <- function(x){
x[sample.int(length(x))]
}
test_that("Resample", {
x <- 1:10
expect_that(length(Resample(x[x > 8])), equals(2))
expect_that(length(Resample(x[x > 9])), equals(1))
expect_that(length(Resample(x[x > 10])), equals(0))
})
RandomPick <- function(data, n) {
if ( is.data.frame(data) ){
data[sample(nrow(data), n, replace=T),]
} else {
data[sample(length(data), n, replace=T)]
}
}
test_that("RandomPick", {
n <- 10
bigger <- 1:(3 * n)
equal <- 1:n
smaller <- c(1)
empty <- c()
df <- data.frame(a=c(1,2,3), b=c(4,5,6))
expect_equal(length(RandomPick(bigger, n)), n)
expect_equal(length(RandomPick(equal, n)), n)
expect_equal(length(RandomPick(smaller, n)), n)
expect_equal(length(RandomPick(empty, n)), 0)
expect_equal(nrow(RandomPick(df, n)), n)
})
CreateBlock <- function(data){
result <- data.frame(Stimulus=character(BLOCK_SIZE),
StimulusType=factor(character(BLOCK_SIZE),
c("LearnedWord","NewWord","Nonword")),
stringsAsFactors=F)
data <- data[,c("Stimulus","StimulusType")]
stopifnot(is.character(data$Stimulus))
newSample <- RandomPick(data[data$StimulusType == "NewWord",], 1)
learnedSample <- RandomPick(data[data$StimulusType == "LearnedWord",], 25)
if( nrow(newSample) > 0 ) {
result[1:25,] <- newSample
} else {
result[1:25,] <- learnedSample
}
if( nrow(learnedSample) > 0 ){
result[26:50,] <- learnedSample
} else {
result[26:50,] <- newSample
}
result[51:100,] <- RandomPick(data[data$StimulusType == "Nonword",], 50)
result <- result[sample(nrow(result)),]
rownames(result) <- 1:nrow(result)
result
}
BLOCK_SIZE <- 100
test_that("CreateBlock", {
stim <- as.character(1:300)
data <- data.frame(Stimulus=stim, stringsAsFactors=F)
data$StimulusType[1:100] <- "NewWord"
data$StimulusType[101:200] <- "LearnedWord"
data$StimulusType[201:300] <- "Nonword"
block <- CreateBlock(data)
trialNewWords <- block$Stimulus[ block$StimulusType == "NewWord" ]
trialLearnedWords <- block$Stimulus[ block$StimulusType == "LearnedWord" ]
trialNonwords <- block$Stimulus[ block$StimulusType == "Nonword" ]
expect_that(nrow(block), equals(BLOCK_SIZE))
expect_that(length(trialNewWords), equals(25))
expect_that(length(unique(trialNewWords)), equals(1))
expect_that(length(trialLearnedWords), equals(25))
expect_that(length(trialNonwords), equals(50))
# TODO: Decide what should be expected for empty vectors?
})
PresentTrials <- function(trialCount, present, data){
trials <- data.frame()
for ( curTrialNum in 1:trialCount ) {
curBlock <- ( (curTrialNum - 1) %/% BLOCK_SIZE) + 1
curTrialNumInBlock <- ( (curTrialNum - 1) %% BLOCK_SIZE ) + 1
isNewBlock <- curTrialNumInBlock == 1
if ( isNewBlock ){
isNotFirstBlock <- curBlock > 1
if ( isNotFirstBlock ){
newWordTrials <- block[block$StimulusType == "NewWord",]
if( length(unique(newWordTrials$Stimulus)) == 1 ){
newWordTrials <- newWordTrials[1,]
wordResponses <- newWordTrials[newWordTrials$Response == "Word",]
wordResponseRate <- nrow(wordResponses) / nrow(newWordTrials)
if ( wordResponseRate >= 0.8 ){
data$StimulusType[data$Stimulus == newWordTrials$Stimulus] <- "LearnedWord"
}
}
}
block <- CreateBlock(data)
block$Block <- curBlock
block$TrialInBlock <- 1:nrow(block)
}
curTrial <- block[curTrialNumInBlock,]
curStim <- curTrial$Stimulus
curStimIsWord <- present(curStim, ifelse(curTrial$StimulusType == "Nonword", "Nonword", "Word"))
block$Trial[curTrialNumInBlock] <- curTrialNum
block$Response[curTrialNumInBlock] <- curStimIsWord
trials <- rbind(trials, block[curTrialNumInBlock,])
}
rownames(trials) <- 1:trialCount
result <- list(Trials=trials,Stimuli=data)
result
}
test_that("PresentTrials", {
stim <- as.character(1:300)
data <- data.frame(Stimulus=stim, stringsAsFactors=F)
data$StimulusType[1:100] <- "NewWord"
data$StimulusType[101:200] <- "LearnedWord"
data$StimulusType[201:300] <- "Nonword"
count <- BLOCK_SIZE * 2.5
result <- PresentTrials(count,
function(cue, outcome){
return(outcome)
},
data)
trials <- result$Trials
stimuli <- result$Stimuli
expect_equal(nrow(trials), count)
expect_equal(length(stimuli$StimulusType[stimuli$StimulusType == "LearnedWord"]), 102)
})
# The original colSums fails if matrix filters to 1 row and gets implicit castet to a vector
ColSums <- function(x) {
if(is.matrix(x)){
return(colSums(x))
} else {
return(x)
}
}
test_that("ColSums",{
m2x2 <- matrix(1,2,2)
colnames(m2x2) <- c("a","b")
expect_equal(ColSums(m2x2), c(a=2,b=2))
expect_equal(ColSums(m2x2[1,]), c(a=1,b=1))
})
MakeMonkey <- function(cueset, outcomeset=c("Word", "Nonword"),
alpha=sqrt(0.001), beta=sqrt(0.001), lambda=1.0){
weights <- matrix(0, length(cueset), length(outcomeset))
rownames(weights) <- cueset
colnames(weights) <- outcomeset
rate <- function(cue){
cues <- unlist(strsplit(cue, "_"))
cueWeights <- weights[cues, outcomeset]
totalActivation <- ColSums(cueWeights)
maxActivated <- names(totalActivation[totalActivation == max(totalActivation)])
return(RandomPick(maxActivated,1))
}
learner <- function(stim, resp){
cues <- unlist(strsplit(stim, "_"))
cueWeights <- weights[cues, outcomeset]
totalActivation <- ColSums(cueWeights)
for (j in 1:length(cues)) {
if (resp == "Nonword") {
yesType <- "Nonword"
noType <- "Word"
} else if (resp == "Word") {
yesType <- "Word"
noType <- "Nonword"
} else {
stop("Unknown outcome", resp)
}
weights[cues[j],yesType] <<- weights[cues[j],yesType] +
alpha * beta * (lambda - totalActivation[yesType])
weights[cues[j],noType] <<- weights[cues[j],noType] +
alpha * beta * (0 - totalActivation[noType])
}
return(rate(stim))
}
give_weights <- function(){
return(weights)
}
list(
GetWeights=give_weights,
Learner=learner,
Rate=rate
)
}
test_that("MakeMonkey",{
cueset <- c("a","b","c")
monkey <- MakeMonkey(cueset)
for (i in 1:1000){
monkey$Learner("a_b","Word")
monkey$Learner("b_c","Nonword")
}
print(monkey$GetWeights())
expect_equal(monkey$Rate("a"), "Word")
expect_equal(monkey$Rate("c"), "Nonword")
})
library(ndl)
dat <- read.table("dataDan.txt", header=T, stringsAsFactors=F)
dat$Cues <- orthoCoding(dat$String, grams=2)
dat$Frequency <- 1
dat$Stimulus <- dat$Cues
dat$StimulusType <- factor(ifelse(dat$Type == "word", "NewWord", "Nonword"), c("Nonword","NewWord","LearnedWord"))
dat$Outcomes <- factor(ifelse(dat$Type == "word", "Word", "Nonword"), c("Word","Nonword"))
dat <- dat[sample(1:nrow(dat)),]
cues <- unique(unlist(strsplit(dat$Cues, "_")))
outcomes <- levels(dat$Outcomes)
monkey <- MakeMonkey(cues, outcomes, alpha=sqrt(0.001), beta=sqrt(0.001), lambda=1.0)
monkeyName <- "DAN"
trialNum <- round(0.5 * as.numeric(monkeydat[monkeydat$Monkey == monkeyName,"NumTrials"]))
system.time(pres <- PresentTrials(
trialNum
,monkey$Learner,dat))
# Analyse data:
learnedWordNum <- nrow(pres$Stimuli[pres$Stimuli$StimulusType == "LearnedWord",])
trialNum <- nrow(pres$Trials)
nonwordTrials <- pres$Trials[pres$Trials$StimulusType == "Nonword",]
wordTrials <- pres$Trials[pres$Trials$StimulusType != "Nonword",]
presNonwordNum <- length(unique(nonwordTrials$Stimulus))
presWordNum <- length(unique(wordTrials$Stimulus))
nonwordAcc <- nrow(nonwordTrials[nonwordTrials$Response == "Nonword",]) / nrow(nonwordTrials)
wordAcc <- nrow(nonwordTrials[wordTrials$Response == "Word",]) / nrow(wordTrials)
genAcc <- (nrow(nonwordTrials) * nonwordAcc + nrow(wordTrials) * wordAcc) / trialNum
monkeydat <- rbind(monkeydat,
c(paste(monkeyName, "Sim1"),
trialNum,
learnedWordNum,
presNonwordNum,
genAcc,
wordAcc,
nonwordAcc))
# TODO: Das in schöne Funktionen packen ;)
# TODO: Durchlaufen lassen für ca 50k Trials für verschiedene alpha, beta zwischen 0 und 1
# TODO: Plotten der verschiedenen Ergebnisse (num,acc) als heatmap 2d plot.
# TODO: Plotten der Unterschiede zu den Vorgabeaffen und optimale alpha beta für diese finden.
# what would be the theoretic success rates?
wRW <- monkey$GetWeights()
aRW <- estimateActivations(dat, wRW)$activationMatrix
aRW <- aRW[,order(colnames(aRW))]
dat$ChoiceRW <- apply(aRW, 1, FUN=function(v){
if(v["Nonword"] >= v["Word"]) {
return("Nonword")
} else {
return("Word")
}})
table(dat$Type, dat$ChoiceRW)
# EOF