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Abstract 

Morasso, P., 1992. Neural mechanisms of synergy formation. Human Movement Science 11, 

169-180. 

The paper discusses a neural modelling approach to synergy formation which is based on the 
concept that the elastic properties of the human musculature not only represent a significant 

low-level feature of the motor system, but can also provide an organizing principle for the global 

computational architecture. The approach is based, on the one hand, on ‘equilibrium-point 

models’ and, on the other, on the dynamics of ‘relaxation networks’. 

Introduction 

The generation of synergies of motor commands and of the pre- 
dicted patterns of their motor consequences are two complementary 
aspects at the core of motor control. The connectionist framework 
that is proposed here is based on the concept that the elastic proper- 
ties of the human musculature not only represent a significant low-level 
feature of the motor system, but can also provide an organizing 
principle for the global computational architecture. Muscle elasticity 
allows one to define a global elastic potential function, tuned by the 
patterns of neuromuscular activity, whose equilibrium configurations 
determine postures, i.e. what we may call postural attractors. At the 
same time, muscle elasticity provides a unified treatment of posture 
and movement because postural attractors can be turned into mecha- 

* This work was supported by the Esprit Projects FIRST and ROBIS, by a National Programme 

on Robotics of the Italian Research Council and by a National Programme on Bioengineering of 

the Italian Ministry of University & Research. 
Author’s address: P. Morasso, Dept. of Computer Science, University of Genoa, Via Opera 

Pia llA, 16145 Genoa, Italy. 

0167.9457/92/$05.00 0 1992 - Elsevier Science Publishers B.V. All rights reserved 



nisms of trajectory formation by modifying the shape of the potential 
field in the direction of the intended movement. 

The origin of this concept can be traced back to the pioneering 
work of Astratyan and Feldman (Astratyan and Feldman 1966; Feld- 
man 19661 and to the subsequent development of so-called equilib- 
rium-point models (Bizzi et al. 1976; 1984; Hogan 1984; Mussa Ivaldi 
et al. 1985; Feldman 1986). However, these studies did not provide a 
computational model of the neural mechanisms that underlie the 
selection and the continuous modification of equilibrium points, com- 
patible with task constraints. In order to obtain this goal, a principle 
was formulated (Mussa Ivaldi et al. 19881, called the Pussiae Motion 
Paradigm (PMP). According to this principle, the continuous modifi- 
cation of equilibrium points which is instrumental for synergy forma- 
tion can be produced via a central neural mechanism that simulates 
passive moLlements, i.e. movements driven by virtual force impulses 
that correspond to the intended movement direction. 

The rationale of PMP is based on the following points: 
_ Passive motion occurs quite naturally in the interaction between the 

musculo-skeletal system and the environment (during a passive 
motion the musculo-skeletal system performs a mechanical relax- 
ation). 

- Passive motion has the remarkable property of selecting patterns of 
joint-rotation and muscle lengthening/shortening that solve the 
inverse kinematic problem, independently of the degree of redun- 
dancy and the kinematic degeneracy which occurs at the limits of 
the workspace. 

- A central neural mechanism that is capable of simulating passive 
motion is the most natural way to incorporate musculo-skeletal 
competence in the central neural controller. It is essentially a 
complex pattern generator that incorporates biomechanical con- 
straints. 

_ The mechanism can be used directly for synergy formation in the 
sense that the muscular and articular variations that result from the 
simulation are an effective representation of the pattern of motor 
commands. Although it operates in a feedforward way, it does not 
rule out feedback compensatory loops, at different levels down the 
stream, that fine-tune the spatio-temporal structure. 

- On the other hand, PMP does not have perceptual and temporal 
competence, which must come from other neural mechanisms, 
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concerned with planning and initiating a movement: PMP is basi- 
cally a degree-of-freedom cruncher that provides a friendly interface 
to higher motor centers. 
A parallel and distributed computational architecture has been 

proposed (Morass0 et al. 1989; Morass0 and Sanguineti 19901 as an 
implementation of the mechanism discussed above. It is an analog 
device in several senses: 
(1) It operates as a dynamic system (an analog computer) and not as a 

symbolic system. 
(2) It has a structural similarity with the neuromuscular system, i.e. it 

is somatotopically organized. 
(3) Its dynamics reflects neural relaxation that strictly mirrors the 

corresponding mechanical relaxation of passive movements. 
The implementation is called M-net (motor relaxation network). It 

is constructed as a network of units which correspond to the different 
constituent parts of the musculo-skeletal system: skeletal segments, 
muscles, and ligaments. The units exchange force and displacement 
signals and the dynamics of the network automatically seeks an 
equilibrium configuration. 

The inputs to an M-net are virtual force impulses which express the 
intended direction of motion. These forces displace the equilibrium 
state of the network and the ensuing dynamics provides two streams 
of output data at the same time: a stream of muscle activations and a 
stream of kinematic expectations. 

The synergy formation architecture that we propose comprises a 
programming network (the M-net) and a planning network. In com- 
parison with other neural models of motor control (Bullock and 
Grossberg 1989; Eckmiller 1990; Jordan 1989; Kawato et al. 1990; 
Massone and Bizzi 1989, among others), the proposed model is 
characterized by the exploitation of the mechanical properties of 
muscles, i.e. the explicit incorporation of biomechanical constraints. 

The organisation of M-nets 

As previously outlined, there are three types of units in an M-net: 
- S-units, that model skeletal segments; 
- M-units, that model mono- and poly-articular muscles; 
- L-units, that model mono- and poly-articular ligaments; 
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These units are defined by the local computations they perform: 
M-units and S-units behave as impedances, i.e. they receive positional 
information and react feeding back force information; S-units, on the 
contrary, behave as admittances, i.e. they receive force information 
and react, modifying positional parameters. With these devices it is 
possible to build networks that can relax in a similar way to the 
underlying musculo-skeletal system. In this sense, an M-net may be 
viewed as a computational rnusculo-skeletal body schema that imple- 
ments the pattern generator required by the equilibrium-point hypoth- 
esis. 

S-units 

S-units model the different skeletal body segments, considered as 
rigid bodies to which complex sets of forces are applied. The input 
variables are the various types of force vectors that can be grouped 
into two classes: internal forces (applied by M-units, L-units, and 
gravity) and external forces (used to express intended directions of 
movement). The latter, in particular, are the global inputs to the 
network and are applied as sequences of impulses. (These impulses 
are generated outside the network by a motor planner which is 
described later on.) The output variables are the current position 
vectors of the insertion points of all the forces impinging on the unit; 
their local coordinates are the parameters of the unit. The activation 
function computes the output variables simulating a viscous motion of 
the body: the twist of the unit (the combination of angular and 
translational velocity) is chosen proportionally to the resultant wrench 
(the resultant force and torque vectors). At equilibrium, the resultant 
vectors are null. 

M-units 

M-units model single and multi-joint muscles as elastic cables 
passing through pulleys and fixed at their extremities onto two differ- 
ent bones. The cables are divided into a number of tracts and, if we 
ignore friction, we can assume that tension is constant in all the tracts 
of the same muscle. Only some tracts change their length during 
movement (they are dubbed active because only their tension influ- 
ences the equilibrium of S-units) but also the other tracts are relevant 
because the muscle force is a function of the total length of the 
muscle. The input variables are the insertion points of the muscle and 
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the output variables are the pairs of force vectors in each active tract. 
Mono-articular muscles only have one pair of force vectors, whereas 
poly-articular muscles have multiple pairs. The two vectors of each 
pair add up to zero and are applied to the two S-units that are 
connected by that muscle tract. The characteristic function of M-units 
is represented by a family of length-tension curves, which are indexed 
by the muscle control variable. These variables are adaptable, i.e. 
their values are changed during the simulation process, as is explained 
in the following. 

L-units 

L-units are used primarily to model joints. Joints are kinematic 
constraints among adjacent linkages that allow restricted motions 
within joint limits. L-units model both types of constraints in a soft 
way, as appropriate ensembles of (high stiffness) springs. For example, 
in the case of ball-and-socket joints, the kinematic constraint can be 
represented by a single spring with zero rest-length; in the case of 
hinge joints we need a pair of springs whose terminals approximately 
identify the rotation axis; in the case of a saddle joint we need two 
pairs of springs. Joint limits can be represented by means of additional 
springs. For example, two more springs are sufficient for the hinge-type 
joint in order to constrain the rotations within a specified angular 
range. 

M-nets as generalised Hopfield networks 

The purpose of an M-net is not to build an exact model of the 
human skeleton but to rather provide a computational schema that 
represents the biomechanical constraints of the synergy formation 
system. From the network modelling point of view, M-nets are dy- 
namic systems with a well defined Liapunov function and therefore 
are similar to the content addressable memories (CAM) initially 
investigated by Hopfield (Hopfield 1982, 1984) and by Cohen and 
Grossberg (1983). Fig. 1 shows the schematisation of an M-net inter- 
preted as a special kind of Hopfield net, in the following sense: 
- The role of neurons in Hopfield nets is played by S-units (big circles 

in the figure); the difference is that inputs and outputs in M-nets 
are vectors, not scalars, and the activation function is more com- 
plex. 
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Fig. 1. Motor relaxation network: a generalised Hopfield network. 

- The role of connections (which are linear functions in Hopfield 
nets) is played by M-units and L-units (small circles in the figure), 
which are non-linear functions; an additional non-linearity in the 
feedback path is due to the connectivity of the musculature on the 
skeletal system, which maps the set of insertion points into the 
corresponding set of muscle lengths. 

- The role of input signals is played by the external force vectors. 
In spite of significant differences, in both cases we have a similar 

relaxation behaviour which is driven by a potential energy function. In 
the Hopfield continues model, this function is the total electrostatic 
energy stored in the membrane capacitances. In the M-net model it is 
the total mechanical elastic energy, stored in M-units and L-units. 

However, the purpose of the relaxation is quite different: 
- A CAM can store multiple patterns as equilibrium configurations 

(points of minimum in the energy landscape) and the purpose of 
the relaxation is to recover a pattern from an initial representation 
which may be partial and/or corrupted. 

- In an M-net, there is only one significant equilibrium configuration 
but this is changed during the simulation process because the 
purpose of the M-net is to implement the passive motion principle. 
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Therefore, the pseudo connection-weights represented by M-units 
must be adaptively changed during relaxation and this can be obtained 
by interleaving, during the simulation, a passive phase and an active 
phase. In the passive phase, an M-net reacts to the application of 
input force impulses by relaxing to a new equilibrium state in an 
iso-electric way, i.e. without changing the control variables of M-units. 
At equilibrium, these control variables are changed in order to shift 
the point of minimum of the energy landscape to the current configu- 
ration; this is the active phase. 

In other words, the neural relaxation process operates in such a way 
that the point of minimum in the potential field tracks the sequence 
of equilibrium configurations determined by the sequence of virtual 
force impulses. Symmetrically, the mechanical relaxation induced by 
the neural relaxation evolves the other way around: the potential field 
leads the current posture and attracts it. 

Is this a plausible biological mechanism? First of all, the units in an 
M-net must be conceived as cell assemblies, such as cortical columns, 
not as single neurons. Such assemblies can be treated as small neural 
networks replicated in a great number of exemplars. Their function is 
to compute the linear and non linear vector operations that we 
described above and this could be accomplished with standard multi- 
layer networks, appropriately trained. Therefore, an M-net can be 
considered as a network of networks, implying a two-level architec- 

ture: 
- On a microscopic level, a number of small neural networks repro- 

duce the geometric/mechanical behaviour of the components of 
the musculo-skeletal system. 

- On a macroscopic level, the pattern of connectivity among the local 
neural networks replicates the topology of the musculo-skeletal 
system and is characterized by a neural relaxation dynamics which 
is analogous to the mechanical relaxation. 
In my opinion, the current knowledge of the functions of the 

pre-motor and motor cortices does not rule out this kind of architec- 
ture. 

In the network modelling field, the idea of a network of networks is 
beginning to attract the attention of researchers. For example, Kawato, 
et al. (1990) have studied an architecture where the inner layer 
contains replicas of a multi-layer network that solves direct-dynamics/ 
direct-kinematics and the outer layer is a Hopfield network that 
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minimizes a torque-change criterion over a whole movement. This 
requires ‘unfolding’ the network in time, which amounts to replication 
of the network modules for each time step. Our approach, on the 
contrary, is incremental. However, the two models cover different 
classes of motor behaviour: optimization of specific skills in the 
former case, and genera1 purpose synergy formation in the latter. 

Synergy formation architecture 

In the synergy formation system I propose, an M-net is the task-in- 
dependent part that incorporates the basic biomechanical constraints. 
It is activated by virtual force impulses and it reacts by relaxing to a 
new posture and shifting there the point of minimum of the potential 
field. Therefore, while the M-net has a comprehensive biomechanical 
competence, it has no competence as regards goal selection and 
timing. This requires another neural mechanism which is the second 
half of the synergy formation system and logically operates at a more 
abstract level: a planning network (P-net). 

In fact, the factorization of trajectory and timing is an important 
functional feature for the acquisition of motor skills, as has been 
remarked by Bullock and Grossberg (1989). In that paper, in particu- 
lar, the authors propose the VITE mode1 that operates directly on 
patterns of muscle lengths and achieves speed control by means of a 
single gating signal (named GO). Although this kind of mechanism is 
reasonable and well motivated, it is questionable that the representa- 
tion level of muscles is the right place to apply it. At that level, i.e. 
when arrays of muscle lengths are considered, it is difficult to discrim- 
inate different task components that frequently occur concurrently 
and require separate planning actions. 

The M-net structure, on the contrary, allows the planning network 
to operate on representations that are directly linked to the task and 
there is reason to think that this kind of representation is actually 
present in the pre-motor and motor cortices, as the experiments on 
reaching by Georgopulos suggest (Georgopulos 1988). The inputs to 
an M-net are indeed sequences of virtual force impulses that express 
intended directions of movement of a selected ‘end-effector’, accord- 
ing to the specific nature of the task. The generation of such se- 
quences can be performed with different types of neural mechanisms, 
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for example a version of the VITE circuit applicable to task-level 
representations or a simplified M-net (Morass0 and Sanguineti 1990). 

Summing up, the synergy formation architecture is composed as 
follows: 
- A planning system that has an analogic and a symbolic component. 

The former component consists of a set of neural networks that can 
generate sequences of virtual force impulses and the latter is a set 
of rules for setting up these sequence generators and for connecting 
them with the underlying M-net. The symbolic component has the 
semantic competence, whereas the analogic components has the 
timing and targeting competence. 

- A motor programming system, an M-net, which is a somatotopically 
organized relaxation network of local networks. It has the biome- 

Fig. 2. Coordination of finger movements during grasping. 
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Fig. 3. Simulation of a walking synergy. 
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chanical competence: it is able to absorb the different sequences of 
virtual force impulses produced by the planning system and to 
integrate them in the overall motor pattern. 

Examples 

Let us consider two examples to get the flavour of the fundamental 
simplicity of the proposed architecture. The first example is a simula- 
tion study of grasping movements. Consider the final closure phase, in 
which the movements of the fingers must be co-ordinated and tar- 
geted to the object. In our simulation environment, the M-net con- 
tained the kinematic chains of the three fingers and the planner 
generated one target for each finger (fig. 2 shows the pre-shaped 
robotic hand in front of an object and the final configuration after 
grasping.) The symbolic part of the planner selected the pre-shape of 
the hand and a triplet of targets for the three fingers, while the 
analogic part generated a sequence of moving targets from which a 
sequence of virtual force impulses was derived and then relayed to the 
fingertip-units of the M-net. These force impulses were integrated by 
the M-net, producing a co-ordinated motion pattern of the three 
fingers. 

The second example concerns a a walking synergy (fig. 3). The 
planning network, in this case, generates two attractors and one 
repulsor. The two attractors are linked to the trunk and the swinging 
foot, respectively, and point in the direction of the next ‘footprint’. 
The repulsor connects the ground and the swinging foot. At each 
heel-strike event a new triplet is computed and this replaces the old 
triplet when the swinging foot is placed on the ground. The finite state 
automaton that performs the simple network set-up operations is a 
part of the symbolic component of the P-net. We wish to stress that 
there is no clock to synchronise all the joint rotations or muscle 
contractions: the synchronisation is a side-effect of network dynamics. 
The model does not produce a completely faithful copy of actual 
walking patterns because details and adjustments come from the 
interaction of the synergy with passive phenomena and segmental 
active mechanisms. Nevertheless, the resemblance of the simulated 
walking pattern to those that are observed is encouraging. 
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