diff --git a/evaluation.mat b/evaluation.mat index 5567e1a..dfc7846 100644 --- a/evaluation.mat +++ b/evaluation.mat Binary files differ diff --git a/text/thesis/03Results.tex b/text/thesis/03Results.tex index 17eb511..9d456e7 100644 --- a/text/thesis/03Results.tex +++ b/text/thesis/03Results.tex @@ -3,14 +3,15 @@ \section{Number of Synergies} \label{res:noSyn} To determine the number of synergies to use we predicted all EMG data with each technique and each number of synergies. The result is the plot in figure~\ref{fig:noSyn}.\\ - The plot tells that 2 and 4 synergies are good values for Autoencoders, for default nevertheless we use 3 synergies since we also use 3 dimensions of kinematics and so it is better to compare. Three is also the most efficient number of Synergies for PCA and NNMF (cf. Section \ref{dis:noSyn}). - TODO%TODO + The plot tells that 2 and 4 synergies are good values for Autoencoders, for default nevertheless we use 3 synergies since we also use 3 dimensions of kinematics and so it is more comparable. Three is also the most efficient number of Synergies for PCA and NNMF (cf. Section \ref{dis:noSyn}).\\ \begin{figure} \centering \includegraphics[width=\textwidth,height=\textheight]{pictures/results/noSyn.png} \caption{Self prediction accuracy with 1 to 6 synergies} \label{fig:noSyn} \end{figure}%TODO (last): check orientation of figure (bottom should be outer edge) + When comparing the results of prediction via different number of synergies, 2 synergies perform significantly ($p<0.01$) worse than 3 and 4. Between 3 and 4 synergies there is no significant difference ($p\approx0.1$).\\ + Even for Autoencoder only the performance of 2 synergies is significantly ($p<0.1$) worse. \section{Classification} \subsection{Comparison of methods of recording} The different methods of recording (EEG, EMG and Low frequencies) also differ in the results. An ANOVA gives $p<0.001$ for all classifications done on 4 different movements and rest. diff --git a/usedMcode/evaluationSynergies.m b/usedMcode/evaluationSynergies.m index a11751b..9102e2d 100644 --- a/usedMcode/evaluationSynergies.m +++ b/usedMcode/evaluationSynergies.m @@ -33,6 +33,26 @@ anova1([autoencData,pcaData,nnmfData],groups) %% Predict from predicted Synergies +autoencData=[synergies.Autoenc.posVia2,synergies.Autoenc.posVia3,synergies.Autoenc.posVia4]; +pcaData=[synergies.PCA.posVia2,synergies.PCA.posVia3,synergies.PCA.posVia4]; +nnmfData=[synergies.NNMF.posVia2,synergies.NNMF.posVia3,synergies.NNMF.posVia4]; + +autoencGroup=cell(size(autoencData,2),1); +autoencGroup(:)={'Autoenc'}; +pcaGroup=cell(size(pcaData,2),1); +pcaGroup(:)={'PCA'}; +nnmfGroup=cell(size(nnmfData,2),1); +nnmfGroup(:)={'NMF'}; +groups=cat(1,autoencGroup,pcaGroup,nnmfGroup); + +noSyn=[2,2,2,3,3,3,4,4,4,2,2,2,3,3,3,4,4,4,2,2,2,3,3,3,4,4,4]; + +anova1([autoencData,pcaData,nnmfData],groups) +anova1([autoencData,pcaData,nnmfData],noSyn) + + +%compare 3 and 4 synergies + autoencData=[synergies.Autoenc.posVia3,synergies.Autoenc.posVia4]; pcaData=[synergies.PCA.posVia3,synergies.PCA.posVia4]; nnmfData=[synergies.NNMF.posVia3,synergies.NNMF.posVia4]; @@ -49,7 +69,4 @@ nnmfGroup(:)={'NMF'}; groups=cat(1,autoencGroup,pcaGroup,nnmfGroup); -noSyn=[2,2,2,3,3,3,4,4,4,2,2,2,3,3,3,4,4,4,2,2,2,3,3,3,4,4,4]; - -anova1([autoencData,pcaData,nnmfData],groups) -anova1([autoencData,pcaData,nnmfData],noSyn) \ No newline at end of file +noSyn=[3,3,3,4,4,4,3,3,3,4,4,4,3,3,3,4,4,4]; \ No newline at end of file