diff --git a/readEEG.m b/readEEG.m deleted file mode 100644 index ad4d469..0000000 --- a/readEEG.m +++ /dev/null @@ -1,42 +0,0 @@ -function readEEG(subject,number,windowEMG,windowEEG,shift,maxFile,threshold,pburgOrder,minEEGFreq,maxEEGFreq) - - fprintf('start read %s%i %s\n',subject,number,datestr(datetime('now'))); - - trainingDataEEGcell=cell(maxFile,1); - trainingDataEMGcell=cell(maxFile,1); - classesCell=cell(maxFile,1); - - for i=1:maxFile - [sig, stat, params] = load_bcidat(sprintf('/home/jph/Uni/masterarbeit/Block1_ReachingMovements/%s/%s_B100%i/%s_B1S00%iR0%i.dat',subject,subject,number,subject,number,i)); - [trainingDataEEGcell{i},trainingDataEMGcell{i}]=generateTrainingData(sig,windowEMG,windowEEG,shift,params,pburgOrder,minEEGFreq,maxEEGFreq); - classesCell{i}=stat.StimulusCode; - fprintf('%ith file processed\n',i) - end - - clear sig - - trainingDataEEG=cell2mat(trainingDataEEGcell); - trainingDataEMG=cell2mat(trainingDataEMGcell); - classesMat=cell2mat(classesCell); - clear trainingDataEEGcell trainingDataEMGcell classesCell - - classificationWithPause=classifyAccordingToEMG(trainingDataEEG, trainingDataEMG,classesMat,shift,params.SamplingRate.NumericValue,threshold); - clear classesMat - - smoothClassification=zeros(size(classificationWithPause)); - for i=1:size(classificationWithPause,1) - smoothClassification(i)=round(mode(classificationWithPause(max(i-2,1):min(i+2,end)))); - end - - clear classificationWithPause - - trainingDataEEG=trainingDataEEG(smoothClassification~=-1,:,:); - trainingDataEMG=trainingDataEMG(smoothClassification~=-1,:); - classification=smoothClassification(smoothClassification~=-1); - - clear smoothClassification i - save(sprintf('/nfs/wsi/ti/messor/hohlochj/matlabData/%s%i200msWindowEMG1sWindowEEG200msShift1sPauseFreq0to200.mat',subject,number),[trainingDataEEG,trainingDataEMG,classification]); - - - fprintf('end read %s%i %s\n',subject,number,datestr(datetime('now'))); -end \ No newline at end of file diff --git a/readEEGEciton.m b/readEEGEciton.m index beeac35..151c50f 100644 --- a/readEEGEciton.m +++ b/readEEGEciton.m @@ -7,7 +7,7 @@ classesCell=cell(maxFile,1); for i=1:maxFile - [sig, stat, params] = load_bcidat(sprintf('/nfs/wsi/ti/messor/hohlochj/origData/%s/%s_B100%i/AO_B1S001R0%i.dat',subject,subject,number,i)); + [sig, stat, params] = load_bcidat(sprintf('/nfs/wsi/ti/messor/hohlochj/origData/%s/%s_B100%i/%s_B1S00%iR0%i.dat',subject,subject,number,subject,number,i)); [trainingDataEEGcell{i},trainingDataEMGcell{i}]=generateTrainingData(sig,windowEMG,windowEEG,shift,params,pburgOrder,minEEGFreq,maxEEGFreq); classesCell{i}=stat.StimulusCode; fprintf('%ith file processed\n',i) @@ -35,7 +35,7 @@ classification=smoothClassification(smoothClassification~=-1); clear smoothClassification i - save(sprintf('/nfs/wsi/ti/messor/hohlochj/matlabData/%s%i200msWindowEMG1sWindowEEG200msShift1sPauseFreq0to200.mat',subject,number),trainingDataEEG,trainingDataEMG,classification); + save(sprintf('/nfs/wsi/ti/messor/hohlochj/matlabData/%s%i200msWindowEMG1sWindowEEG200msShift1sPauseFreq0to200.mat',subject,number),[trainingDataEEG,trainingDataEMG,classification]); fprintf('end read %s%i %s\n',subject,number,datestr(datetime('now')));