diff --git a/text/thesis/03Results.tex b/text/thesis/03Results.tex index dd3a4d3..6612b2b 100644 --- a/text/thesis/03Results.tex +++ b/text/thesis/03Results.tex @@ -259,9 +259,10 @@ \caption{Predicting positions from EMG or Autoencoder} \label{fig:EMGautoencPos} \end{figure} - \subsection{Cross-validation of Ridge Parameter} - TODO\\%TODO - For EMG we find no clear best parameter. When predicting velocities we get best parameters chosen as shown in table \ref{tab:ridgeParamEMGkin}. A 'win' refers to a run where this $\lambda$ scored the highest correlation. + \subsection{Cross-validation of Ridge Parameter}%TODO + In tables \ref{tab:ridgeParamEMGkin}, \ref{tab:ridgeParamHighKin} and \ref{tab:ridgeParamAO6Kin} we find the number of 'wins' for each parameter\footnote{\ref{tab:ridgeParamHighKin} and \ref{tab:ridgeParamAO6Kin} were calculated with a order for Burg's method of 50 instead of the later default of 250}. A 'win' refers to a run where this $\lambda$ scored the highest correlation.\\ + For EMG there is no clear preference but it seems like 100 should work as parameter. For EEG we see a clear preference for $\lambda=100$. Low Frequencies seem to prefer a lower parameter about 10 however this was only evaluated for one session. %TODO, if better results + For all other runs we used $\lambda = 100$ for all methods, better results might be possible with a parameter adapted better. \begin{table} \centering \begin{math} @@ -274,6 +275,34 @@ \caption{Number of 'wins' for each parameter when doing ridge regression to predict velocities from EMG} \label{tab:ridgeParamEMGkin} \end{table} + \begin{table} + \centering + \begin{math} + \begin{array} + {r||c|c|c|c} + \lambda&100 & 1000 & 10000 & 100000\\\hline + EEG & 1334 & 192 & 4 &0\\ + EMG & 794 & 468 & 159 & 109\\ + LF& 1396 & 71 & 24 & 39 + \end{array} + \end{math} + \caption{Number of 'wins' for each parameter when doing ridge regression to predict velocities from EEG, EMG or LF} + \label{tab:ridgeParamHighKin} + \end{table} + \begin{table} + \centering + \begin{math} + \begin{array} + {r||c|c|c|c||c|c|c|c} + \lambda&0.001 & 0.01 & 0.1 & 1 & 1 & 5 & 10 & 100\\\hline + EEG & 0&0&0& 30 & 0 & 0 & 1 & 29\\ + EMG & & & & & 7 & 9 & 10 & 4\\ + LF& & & & & 1 & 13 & 14 & 2 + \end{array} + \end{math} + \caption{Number of 'wins' for each parameter when doing ridge regression to predict velocities from EEG, EMG or LF (run on AO6 only)} + \label{tab:ridgeParamAO6Kin} + \end{table} \section{Topographical plots} \label{res:topo} In figure \ref{fig:topoAlpha} we see the difference between move and rest in the alpha band, in \ref{fig:topoBeta} beta band (13-20Hz) is displayed.\\