diff --git a/kfoldCV.m b/kfoldCV.m index 2aebb22..8f5c5be 100644 --- a/kfoldCV.m +++ b/kfoldCV.m @@ -4,7 +4,7 @@ parfor cExp=1:2*cExpMax+1 c=2^(cExp-cExpMax-1); - randomMapping=randperm(size(trainingData,1)); + randomMapping=transpose(randperm(size(trainingData,1))); accurancy=zeros(k,3); for i=1:k @@ -12,6 +12,7 @@ testData=trainingData(mod(randomMapping,k)+1==i,:,:); trainClasses=classification(mod(randomMapping,k)+1~=i); testClasses=classification(mod(randomMapping,k)+1==i); + %fprintf('i=%i, k=%i, c=%i\n',i,k,c) [trainClasses,trainData]=balanceClasses(trainClasses,trainData,noClasses,0.00001); model=svmtrain(trainClasses,trainData(:,:),sprintf('-t 0 -c %f -q',c)); [~, accurancy(i,:), ~]=svmpredict(testClasses, testData(:,:), model,'-q'); diff --git a/read.m b/read.m index 0d915ec..3dd02f9 100644 --- a/read.m +++ b/read.m @@ -32,7 +32,7 @@ smoothClassification=zeros(size(classificationWithPause)); for i=1:size(classificationWithPause,1) - smoothClassification(i)=round(mean(classificationWithPause(max(i-round(1/window),1):min(i+round(1/window),end)))); + smoothClassification(i)=round(mode(classificationWithPause(max(i-2,1):min(i+2,end)))); end clear classificationWithPause @@ -42,7 +42,7 @@ classification=smoothClassification(smoothClassification~=-1); clear smoothClassification i -save /home/jph/Uni/masterarbeit/data/AO1200msWindow50msShift.mat +save /home/jph/Uni/masterarbeit/data/AO1200msWindow.mat disp('end') diff --git a/svm.m b/svm.m index 27c3fe8..7be527c 100644 --- a/svm.m +++ b/svm.m @@ -8,13 +8,13 @@ window=0.2; shift=0.05; -load('/home/jph/Uni/masterarbeit/data/AO1.mat'); +load('/home/jph/Uni/masterarbeit/data/AO1200msWindow.mat'); %k=2; -maxExpC=5; % c\in {2^i|i=-maxExpC:1:maxExpC} +%maxExpC=0; % c\in {2^i|i=-maxExpC:1:maxExpC} %choose to estimate based on EEG or EMG -trainingData=trainingDataEEG; +trainingData=trainingDataEMG; clear trainingDataEEG; clear trainingDataEMG;