diff --git a/readEEGEciton.m b/readEEGEciton.m index 0a527cb..69661ee 100644 --- a/readEEGEciton.m +++ b/readEEGEciton.m @@ -1,6 +1,6 @@ function readEEGEciton(subject,number,windowEMG,windowEEG,shift,maxFile,threshold,pburgOrder,minEEGFreq,maxEEGFreq) - fprintf('start read %s%i %s\n',subject,number,datestr(datetime('now'))); + %fprintf('start read %s%i %s\n',subject,number,datestr(datetime('now'))); trainingDataEEGcell=cell(maxFile,1); trainingDataEMGcell=cell(maxFile,1); @@ -10,7 +10,7 @@ [sig, stat, params] = load_bcidat(sprintf('/nfs/wsi/ti/messor/hohlochj/origData/%s/%s_B100%i/%s_B1S00%iR0%i.dat',subject,subject,number,subject,number,i)); [trainingDataEEGcell{i},trainingDataEMGcell{i}]=generateTrainingData(sig,windowEMG,windowEEG,shift,params,pburgOrder,minEEGFreq,maxEEGFreq); classesCell{i}=stat.StimulusCode; - fprintf('%ith file processed\n',i) + %fprintf('%ith file processed\n',i) end clear sig @@ -38,5 +38,5 @@ save(sprintf('/nfs/wsi/ti/messor/hohlochj/matlabData/%s%i200msWindowEMG1sWindowEEG200msShift1sPauseFreq0to200.mat',subject,number),'trainingDataEEG','trainingDataEMG','classification','-v7.3'); - fprintf('end read %s%i %s\n',subject,number,datestr(datetime('now'))); + %fprintf('end read %s%i %s\n',subject,number,datestr(datetime('now'))); end diff --git a/svmEciton.m b/svmEciton.m index 52d7aaf..cef349e 100644 --- a/svmEciton.m +++ b/svmEciton.m @@ -20,16 +20,16 @@ noClasses=size(unique(classification),1); cm=zeros(noClasses); randMap=randperm(size(trainingData,1)); - disp('startCV') + %disp('startCV') parfor i=1:k leaveOut=trainingData(mod(randMap,k)==i-1,:,:); leaveClasses=classification(mod(randMap,k)==i-1); remaining=trainingData(mod(randMap,k)~=i-1,:,:); remainingClasses=classification(mod(randMap,k)~=i-1); - disp(datestr(datetime('now'))) - fprintf('create %ith model\n',i) + %disp(datestr(datetime('now'))) + %fprintf('create %ith model\n',i) [model,maxC(i)]=kfoldCV(remainingClasses,remaining,k,maxExpC,maxPerClass); - disp(datestr(datetime('now'))) + %disp(datestr(datetime('now'))) [predictions,accurancy(i,:),~]=svmpredict(leaveClasses,leaveOut(:,:),model); cm=cm+confusionmat(leaveClasses,predictions); %confusion matrix @@ -45,5 +45,6 @@ imagesc(cmScaled) colorbar(); saveas(fig,sprintf('/nfs/wsi/ti/messor/hohlochj/plots/%s%i%icm200ms1sPause.fig',subject,number,EEG),'fig'); - save(sprintf('/nfs/wsi/ti/messor/hohlochj/matlabData/%s%i%i200ms1sPause.fig',subject,number,EEG),'meanAccurancy','maxC','cmScaled','-v7.3'); + save(sprintf('/nfs/wsi/ti/messor/hohlochj/matlabData/%s%i%i200ms1sPause.mat',subject,number,EEG),'meanAccurancy','maxC','cmScaled','-v7.3'); + fprintf('%s%i%i finished %s\n',subject,number,EEG,datestr(datetime('now'))) end