function [correlation]=ridgeCV(pathToFile,subject,number,EEG,k,ridgeParams,windowEMG,windowEEG,shift,minEEGFreq,maxEEGFreq,pause)
load(strcat(pathToFile,sprintf('../matlabData/%s%i%imsWindowEMG%isWindowEEG%imsShift1sPauseFreq%ito%iPause%i.mat',subject,number,windowEMG*1000,windowEEG,shift*1000,minEEGFreq,maxEEGFreq,pause)));
clear classification;
if EEG
trainingData=trainingDataEEG;
else
trainingData=trainingDataEMG;
end
clear trainingDataEEG;
clear trainingDataEMG;
randMap=randperm(size(trainingData,1));
kin=kinematics;
correlations=zeros([k,1]);
parfor i=1:k
leaveOut=trainingData(mod(randMap,k)==i-1,:,:);
leaveKin=kin(mod(randMap,k)==i-1,:);
remaining=trainingData(mod(randMap,k)~=i-1,:,:);
remainingKin=kin(mod(randMap,k)~=i-1,:);
%fprintf('%s create %ith model\n',datestr(datetime('now')),i)
[coeffs]=kFoldRidge(remainingKin,remaining,k,ridgeParams);
correlations(i)=ridgeCorrelation(leaveKin,leaveOut,coeffs);
end
correlation=mean(correlations);
end