addpath('/home/hohlochj/masterarbeit/usedMcode')
pathToFile='/nfs/wsi/ti/messor/hohlochj/origData/';
%pathToFile='/home/jph/Uni/masterarbeit/origData/';
maxFile=5;
[subjects,numbers]=namesAndNumbers(pathToFile);
numbersMat=cell2mat(numbers);
subjectsForNumbers=cell(size(numbersMat,2),1);
j=1;
for i=1:size(subjects,2)
subject=subjects{i};
for number=numbers{i}
subjectsForNumbers{j}=subject;
j=j+1;
end
end
EMG=cell(size(numbersMat,2),1);
parfor j=1:size(numbersMat,2)
number=numbersMat(j);
subject=subjectsForNumbers{j};
EMG{j}=readEMGSig(pathToFile,subject,number,maxFile);
end
trainingData=cell2mat(EMG);
maxSize=6;
r2Autoenc=zeros([maxSize,size(trainingData,2)]);
for i=1:maxSize
ae=trainAutoencoder(trainingData',i,'ShowProgressWindow',false);
predicted=predict(ae,trainingData');
r2Autoenc(i,:)=correlation2(trainingData,predicted');
end
fig=figure();
subplot(1,3,1);
plot(r2Autoenc)
title('Autoencoder')
xlabel('number of syergies')
ylabel('R^2')
%PCA
[COEFF,SCORE,latent] = pca(trainingData,'Centered',false);
r2PCA=zeros([maxSize,size(trainingData,2)]);
for i=1:maxSize
predicted=SCORE(:,1:i)*COEFF(:,1:i)';
r2PCA(i,:)=correlation2(trainingData,predicted);
end
subplot(1,3,2);
plot(r2PCA)
title('PCA')
xlabel('number of syergies')
ylabel('R^2')
%NNMF
r2NNMF=zeros([maxSize,size(trainingData,2)]);
for i=1:maxSize
[W,H]=nnmf(trainingData,i);
predicted=W*H;
r2NNMF(i,:)=correlation2(trainingData,predicted);
end
subplot(1,3,3);
plot(r2NNMF)
title('NNMF')
xlabel('number of syergies')
ylabel('R^2')