function [trainingDataEEG,trainingDataEMG] = generateTrainingData(splitSignals,NFFT,window,shift,params,secs)
frequency=params.SamplingRate.NumericValue;
tempEEG2=zeros([32,size(splitSignals,3),NFFT/2+1]);
tempEMG2=zeros(fix([size(splitSignals,2)-3-32,size(splitSignals,3),fix(floor(size(splitSignals,1)/(frequency*window))-1)*window/shift+1]));
%Filter around 50Hz and below 2 Hz
[A,B]= butter(2,[48 52]/(frequency/2),'stop');
[C,D]= butter(2,2/(frequency/2),'high');
parfor i=1:32 %filter single channel, w/o HEOG, Synchro and 0s
tempEEG=zeros(size(splitSignals,3),NFFT/2+1);
for j=1:size(splitSignals,3) %filter single trial
tempEEG(j,:)=pwelch(filter(C,D,filter(A,B,splitSignals(1:secs*frequency,i,j))),[],[],NFFT,frequency);
end
tempEEG2(i,:,:)=tempEEG;
end
trainingDataEEG=permute(tempEEG2,[2 1 3]);
parfor i=33:size(splitSignals,2)-3
tempEMG=zeros(fix([size(splitSignals,3),(floor(size(splitSignals,1)/(frequency*window))-1)*window/shift+1]));
for j=1:size(splitSignals,3) %filter single trial
tempEMG(j,:)=waveformLength(filter(C,D,filter(A,B,splitSignals(:,i,j))),frequency,window,shift);
end
tempEMG2(i,:,:)=tempEMG;
end
trainingDataEMG=permute(tempEMG2,[2 1 3]);
end