close all
clear all
clc
%params
NFFT=2048;
cutWindowEEG=2;
window=0.2;
shift=0.05;
load('/home/jph/Uni/masterarbeit/data/AO1.mat');
%k=2;
maxExpC=5; % c\in {2^i|i=-maxExpC:1:maxExpC}
%choose to estimate based on EEG or EMG
trainingData=trainingDataEMG;
clear trainingDataEEG;
clear trainingDataEMG;
accurancy=zeros(k,3);
noClasses=size(unique(classification),1);
cm=zeros(noClasses);
randMap=randperm(size(trainingData,1));
disp('startCV')
for i=1:k
leaveOut=trainingData(mod(randMap,k)==i-1,:,:);
leaveClasses=classification(mod(randMap,k)==i-1);
remaining=trainingData(mod(randMap,k)~=i-1,:,:);
remainingClasses=classification(mod(randMap,k)~=i-1);
disp(datestr(datetime('now')))
fprintf('create %ith model\n',i)
model=kfoldCV(remainingClasses,remaining,k,maxExpC);
disp(datestr(datetime('now')))
[predictions,accurancy(i,:),pvalues]=svmpredict(leaveClasses,leaveOut(:,:),model);
cm=cm+confusionmat(leaveClasses,predictions); %confusion matrix
%cf: for each cue what was the prediction (maybe colourCoded)
%fprintf('%ith step done\n',i)
end
meanAccurancy=mean(accurancy(:,1))