function [model,maxC] = kfoldCV(classification,trainingData,k,cExpMax,maxDataPerClass)
noClasses=size(unique(classification),1);
if cExpMax>0 %CV only if necessary
cvAccurancy=zeros(2*cExpMax+1,1);
parfor cExp=1:2*cExpMax+1
c=2^(cExp-cExpMax-1);
randomMapping=transpose(randperm(size(trainingData,1)));
accurancy=zeros(k,3);
for i=1:k
trainData=trainingData(mod(randomMapping,k)+1~=i,:,:);
testData=trainingData(mod(randomMapping,k)+1==i,:,:);
trainClasses=classification(mod(randomMapping,k)+1~=i);
testClasses=classification(mod(randomMapping,k)+1==i);
%fprintf('i=%i, k=%i, c=%i\n',i,k,c)
[trainClasses,trainData]=balanceClasses(trainClasses,trainData,maxDataPerClass,noClasses);
model=svmtrain(trainClasses,trainData(:,:),sprintf('-t 0 -c %f -q',c));
[~, accurancy(i,:), ~]=svmpredict(testClasses, testData(:,:), model,'-q');
end
cvAccurancy(cExp)=mean(accurancy(:,1));
end
[~,maxC]=max(cvAccurancy);
else
maxC=1; %no gridsearch since only one C possible
end
bestC=2^(maxC-cExpMax-1);
[balancedClasses, balanceData]=balanceClasses(classification,trainingData,maxDataPerClass,noClasses);
model=svmtrain(balancedClasses, balanceData(:,:),sprintf('-t 0 -c %f -q',bestC));
end