function [correlation,maxRidgeParamIndex]=ridgeCV(savePath,data,goal,k,ridgeParams)
load(savePath);
clear classification;
if strcmp(data,'EEG')
trainingData=trainingDataEEG;
elseif strcmp(data,'EMG')
trainingData=trainingDataEMG;
elseif strcmp(data,'LF')
trainingData=trainingDataEEGlf;
else
error('only EEG, EMG and LF are valid inputs for data');
end
clear trainingDataEEG;
clear trainingDataEEGlf;
clear trainingDataEMG;
if strcmp(goal,'Autoenc')
predicted=synergiesAutoenc;
elseif strcmp(goal,'PCA')
predicted=synergiesPCA;
elseif strcmp(goal,'NNMF')
predicted=synergiesNNMF;
elseif strcmp(goal,'kin')
predicted=kinematics;
else
error('only kin, Autoenc, PCA and NNMF are valid inputs for goal');
end
correlation=zeros(size(predicted,2),1);
maxRidgeParamIndex=zeros(size(predicted,2),k);
for j=1:size(predicted,2)
randMap=randperm(size(trainingData,1));
kin=predicted(:,j);
correlations=zeros([k,1]);
for i=1:k
leaveData=trainingData(mod(randMap,k)==i-1,:);
leaveKin=kin(mod(randMap,k)==i-1);
remainingData=trainingData(mod(randMap,k)~=i-1,:);
remainingKin=kin(mod(randMap,k)~=i-1);
%fprintf('%s create %ith model\n',datestr(datetime('now')),i)
[coeffs,maxRidgeParamIndex(j,i)]=kFoldRidge(remainingData,remainingKin,k,ridgeParams);
correlations(i)=ridgeCorrelation(leaveData,leaveKin,coeffs);
end
correlation(j)=mean(correlations);
end
end