addpath('/home/hohlochj/masterarbeit/usedMcode')
pathToFile='/nfs/wsi/ti/messor/hohlochj/origData/';
%pathToFile='/home/jph/Uni/masterarbeit/Block1_ReachingMovements/';
maxFile=5;
threshold=10000; %EMG is classified as movement
allSubjects=true; %run all subjects and days or only one random day for one random subject
windowEMG=0.2;
windowEEG=1;
shift=0.2;
pburgOrder=50;
minEEGFreq=0;
maxEEGFreq=200;
pause=false;
noLFsamples=5;
ridgeParams=[0.1];
k=10;
maxExpC=0;
maxPerClass=250;
EEG=true;
poolObj=parpool(32);
[subjects,numbers]=namesAndNumbers(pathToFile);
numbersMat=cell2mat(numbers);
subjectsForNumbers=cell(size(numbersMat,2),1);
j=1;
for i=1:size(subjects,2)
subject=subjects{i};
for number=numbers{i}
subjectsForNumbers{j}=subject;
j=j+1;
end
end
j=j-1;
if allSubjects
meanAccurancysEMG=zeros([j,1]);
meanAccurancysEEG=zeros([j,1]);
meanAccurancysLF=zeros([j,1]);
maxCEMG=zeros([j,k,1]);
maxCEEG=zeros([j,k,1]);
maxCLF=zeros([j,k,1]);
cmScaledEMG=zeros([j,5,5]);
cmScaledEEG=zeros([j,5,5]);
cmScaledLF=zeros([j,5,5]);
maxRidgeParamIndexEEG=zeros([j,3,k]);
maxRidgeParamIndexEMG=zeros([j,3,k]);
maxRidgeParamIndexLF=zeros([j,3,k]);
correlationEMG=zeros([j,3]); %x,y,angle
correlationEEG=zeros([j,3]);
correlationLF=zeros([j,3]);
parfor j=1:size(numbersMat,2)
number=numbersMat(j);
subject=subjectsForNumbers{j};
savePath=readEEG(pathToFile,subject,number,windowEMG,windowEEG,shift,maxFile,threshold,pburgOrder,minEEGFreq,maxEEGFreq,pause,noLFsamples);
[meanAccurancysEMG(j),maxCEMG(j,:),cmScaledEMG(j,:,:)]=svmEciton(savePath,'EMG',k,maxExpC,maxPerClass);
[meanAccurancysEEG(j),maxCEEG(j,:),cmScaledEEG(j,:,:)]=svmEciton(savePath,'EEG',k,maxExpC,maxPerClass);
[meanAccurancysLF(j),maxCLF(j,:),cmScaledLF(j,:,:)]=svmEciton(savePath,'LF',k,maxExpC,maxPerClass);
[correlationEMG(j,:),maxRidgeParamIndexEMG(j,:,:)]=ridgeCV(savePath,'EMG',k,ridgeParams);
[correlationEEG(j,:),maxRidgeParamIndexEEG(j,:,:)]=ridgeCV(savePath,'EEG',k,ridgeParams);
[correlationLF(j,:),maxRidgeParamIndexLF(j,:,:)]=ridgeCV(savePath,'LF',k,ridgeParams);
fprintf('%s%i finished %s\n',subject,number,datestr(datetime('now')))
end
save(strcat(pathToFile,sprintf('../matlabData/%s_callAll.mat',datestr(datetime('now')))));
else
j=fix(rand()*size(numbersMat,2)+1);
number=numbersMat(j);
subject=subjectsForNumbers{j};
savePath=readEEG(pathToFile,subject,number,windowEMG,windowEEG,shift,maxFile,threshold,pburgOrder,minEEGFreq,maxEEGFreq,pause,noLFsamples);
[meanAccurancysEMG,maxCEMG,cmScaledEMG(:,:)]=svmEciton(savePath,'EMG',k,maxExpC,maxPerClass);
[meanAccurancysEEG,maxCEEG,cmScaledEEG(:,:)]=svmEciton(savePath,'EEG',k,maxExpC,maxPerClass);
[meanAccurancysEEG,maxCEEG,cmScaledEEG(:,:)]=svmEciton(savePath,'LF',k,maxExpC,maxPerClass);
[correlationEMG,maxRidgeParamIndexEMG(:,:)]=ridgeCV(savePath,'EMG',k,ridgeParams);
[correlationEEG,maxRidgeParamIndexEEG(:,:)]=ridgeCV(savePath,'EEG',k,ridgeParams);
[correlationLF,maxRidgeParamIndexLF(:,:)]=ridgeCV(savePath,'LF',k,ridgeParams);
fprintf('%s%i finished %s\n',subject,number,datestr(datetime('now')))
save(strcat(pathToFile,sprintf('../matlabData/%s_call%s%i.mat',datestr(datetime('now')),subject,number)));
end
delete(poolObj)