diff --git a/is/kaggle/1st.py b/is/kaggle/1st.py index d4ace7e..3129032 100644 --- a/is/kaggle/1st.py +++ b/is/kaggle/1st.py @@ -22,3 +22,4 @@ predictions = test.join(data,on='ID') predictions[['ID','WeightInter']].to_csv('sampleSubmission.csv', header = ['ID','Weight'],index_label=False,index=False) + diff --git a/mr/ub6/UB6.pdf b/mr/ub6/UB6.pdf index 1d9b25c..27f9c10 100644 --- a/mr/ub6/UB6.pdf +++ b/mr/ub6/UB6.pdf Binary files differ diff --git a/mr/ub6/UB6.tex b/mr/ub6/UB6.tex index 8c66a69..9d6f652 100644 --- a/mr/ub6/UB6.tex +++ b/mr/ub6/UB6.tex @@ -144,12 +144,12 @@ \end{pmatrix}$ \end{itemize} werte falsch ... finde rechenfehler nicht. - + \item $(K^{-1} p_R)^T\cdot E\cdot K^{-1}p_L = p_R^{T}\cdot K^{T^{-1}}\cdot E\cdot K^{-1} \cdot p_L\\ E= K^T\cdot F\cdot K \\ F= K^{T^{-1}}\cdot E\cdot K^{-1}$\\ K = calibration matrix of the cameras - \item + \item $ K=\begin{pmatrix} 500&0&320\\ @@ -190,9 +190,9 @@ s_1=4, s_2=6, s_3=7\\ \begin{tabular}{c||llllllllll} outlier ratio & 0.1 &0.2 &0.3 &0.4 &0.5 &0.6 &0.7 &0.8 &0.9 \\ \hline - s1=4& 5 & 9 & 17 & 34 & 72 & 178 & 566 & 2876 & 4650 \\ + s1=4& 5 & 9 & 17 & 34 & 72 & 178 & 567 & 2876 & 4650 \\ s2=5 & 6 & 12 &26 &57 &146 &448 &1893 &14389 &460515 \\ - s3=7 & 8 &20 & 54 &163 &588 &2809 &21055 &359777 &46051700 + s3=7 & 8 &20 & 54 &163 &588 &2809 &21055 &359777 &46051700 \end{tabular} $ \item A: 4 datapoints 150ns a iteration\\ @@ -201,16 +201,16 @@ \eta = 0.7\\ k_A= 567\\ k_B=1893\\ - 140/40= 3.5$ B is 3.5 times faster than A\\ - $1893/3.5= 541$\\ - So we choose B although it needs more points. - + k_A\cdot t_A=567\cdot 140ns=79380ns\\ + k_B\cdot t_B=1893\cdot 40ns= 75720ns$\\ + So the time for computation of B is smaller even with more points needed. So we choose B because of faster computationtime. If we are short for points however we should use A even though it takes more time. + \end{enumerate} \Aufgabe{Stereo Vision}{8} \begin{enumerate} \item As higher $d_{max}$ gets as smaller $z_b$ can be. It has no influnce on the highest observable $z_b$\\ - $z_{p,min}=\frac{f\cdot b}{d_{max}}=\frac{512px\cdot10cm}{64px}=80cm$ - \item + $z_{p,min}=\frac{f\cdot b}{d_{max}}=\frac{512px\cdot10cm}{64px}=80cm$ + \item $ d \sim N(d_{true},\sigma_d)$\\ $z_{p}(d)=\frac{f\cdot b}{d}$\\ TaylorApprox:\\$z_p(d)=z(d_{true})+z'(d_{true})(d-d_{true})=\frac{f\cdot b}{d_{true}}- \frac{f\cdot b}{d_{true}^2}(d-d_{true})= \frac{2f\cdot b}{d_{true}}-\frac{f\cdot b}{d_{true}^2}\cdot d\\ @@ -225,7 +225,7 @@ \sigma_z= \frac{5^4}{512^2\cdot5^2}\cdot 0.5=\frac{5^2}{512^2\cdot 2}=0.0000477=4.77*10^{-5}cm $ \item $o_{z}=5\\ - b=\sqrt{\frac{z_p^4}{f^2\cdot o_z}\sigma_d} = \sqrt{\dfrac{5^3}{512^2\cdot2}}= 0.0154 cm + b=\sqrt{\frac{z_p^4}{f^2\cdot o_z}\sigma_d} = \sqrt{\dfrac{5^3}{512^2\cdot2}}= 0.0154 cm $ \end{enumerate} \end{document}