diff --git a/mr/UB3/CalcPhi.png b/mr/UB3/CalcPhi.png new file mode 100644 index 0000000..6ae9458 --- /dev/null +++ b/mr/UB3/CalcPhi.png Binary files differ diff --git a/mr/UB3/mr3.pdf b/mr/UB3/mr3.pdf index 7c29377..b70f701 100644 --- a/mr/UB3/mr3.pdf +++ b/mr/UB3/mr3.pdf Binary files differ diff --git a/mr/UB3/mr3.tex b/mr/UB3/mr3.tex index 7988b0e..36172e5 100644 --- a/mr/UB3/mr3.tex +++ b/mr/UB3/mr3.tex @@ -170,54 +170,54 @@ 1 \frac{m}{s} \end{pmatrix} $ \item - $ \varPsi_1 = tan^{-1}(\frac{0.5}{0.5}) = 90^\circ\\ - v_1= 0.5*\pi= 90^\circ\\ + $ \varPsi_1 = tan^{-1}(\frac{0.5}{0.5}) = 45^\circ\\ + v_1= 0.5*\pi= 1.5708 \frac{m}{s}\\ u_1=\begin{pmatrix} - 90^\circ\\ + 45^\circ\\ 1.5708 \frac{m}{s} \end{pmatrix} $ \item $u_2=-u_1=\begin{pmatrix} - -90^\circ\\ + -45^\circ\\ -1.5708 \frac{m}{s} \end{pmatrix} $ \end{itemize} - 90 Grad Einschlagwinkel ist nicht möglich... + \end{enumerate} \Aufgabe{}{4} - + $ r=1m \\ + l_\omega = 0.3m\\ + l_a=0.5m + $ + \begin{enumerate}[(a)] + \item + Assumed left rotation:\\ + $\varPsi_l = tan^{-1}(\frac{l_a}{r-0,5l_\omega}) = tan^{-1}(\frac{0.5}{1-0.5*0.3})= 30.47^\circ\\ + \varPsi_r = tan^{-1}(\frac{l_a}{r+0,5l_\omega}) = tan^{-1}(\frac{0.5}{1+0.5*0.3})=23.5^\circ + $ + + + \begin{figure}[!htb] + + \centering + \includegraphics[width=0.6\textwidth]{CalcPhi.png} + \caption{\label{fig:Psi01} Determination of $\varPsi_r$ and $\varPsi_l$} + + \end{figure} + \item + $sl = 2*PI* (1-0.5*0.3) = 5.341m \\ + sr = 2*PI* (1+0.5*0.3) =7.225m\\ + sl -sr = 1.885m + $ + + \end{enumerate} + \Aufgabe{}{8} - \Aufgabe{}{6} - \begin{enumerate}[(a)] - \item Forward kinematic velocity: calculation of the robots' current pose with knowledge about the velocity and position of the last pose \\ - inverse kinematic velocity: given a pose the velocity and position needed to reach this pose are calulated - \item $^R\mathbf{v}=\begin{pmatrix} - 0.2\frac{m}{s} \\ 1 \frac{1}{s} - \end{pmatrix}$, $l=0.2m$\\ - \begin{align} - v_l &= \frac{2\cdot 0.2-0.2}{2}&=0.1\\ - v_r &= \frac{2\cdot 0.2+0.2}{2}&=0.3 - \end{align} - $\Rightarrow \mathbf{u}_t=\left(0.1\frac{m}{s}, 0.3\frac{m}{s}\right)^T$ - \item \begin{align} - v &= \frac{0.3+0.5}{2}\frac{m}{s} &=0.4\frac{m}{s}\\ - \omega &= \frac{0.5-0.3}{0.2}\frac{1}{s}&=1\frac{1}{s} - \end{align} - $\Rightarrow \mathbf{v}_t=\left(0.4\frac{m}{s},1\frac{1}{s}\right)$ - \item \begin{align} - \frac{1}{2}v_r+\frac{1}{2}v_l &=v\\ - \frac{1}{l}v_r -\frac{1}{l}v_l &=\omega - \end{align}$\Leftrightarrow$\begin{align} - v_r+v_l &= 2v\\ - v_r-v_l &=l\omega\\ - \end{align} - $\Rightarrow 2v_r =2v+l\omega\Leftrightarrow v_r=\frac{2v+l\omega}{2}$\\ - $\Rightarrow \frac{2v+l\omega}{2}+v_l =2v \Leftrightarrow v_l=2v-\frac{2v+l\omega}{2}=\frac{2v-l\omega}{2}$\qed - \end{enumerate} +