diff --git a/ea/ubA/eaA.pdf b/ea/ubA/eaA.pdf index 463adac..1ee9b4d 100644 --- a/ea/ubA/eaA.pdf +++ b/ea/ubA/eaA.pdf Binary files differ diff --git a/ea/ubA/eaA.tex b/ea/ubA/eaA.tex index 49ab2f5..81d5eb9 100644 --- a/ea/ubA/eaA.tex +++ b/ea/ubA/eaA.tex @@ -94,7 +94,7 @@ \Leftrightarrow \sin\left(\pi\cdot w_e\right)=\frac{s}{2r}\\ \Leftrightarrow r=\frac{s}{2\sin\left(w_e\pi\right)}\\ \Rightarrow r=\frac{3cm}{2\sin\left(0.2\pi\right)}\approx 2.552cm=\sigma_{opt}$ - \end{enumerate}\pagebreak\\ + \end{enumerate}\pagebreak \Aufgabe{1/5-Erfolgsregel (Praxis)}{11}\\ \foreach \x in {0.15,0.2,0.25,0.3,0.5,0.6}{ \includegraphics[width=0.33\textwidth]{figures/sigma\x .png} @@ -168,7 +168,7 @@ j=j+1 np.save("stats.npy",stats) -\end{lstlisting}\\ +\end{lstlisting} \Aufgabe{Rekombination in ES}{4} \begin{enumerate}[(a)] \item $a_1'=(0.23,-0.92,-0.23,-0.85,0.21)$ diff --git a/mr/ub10/A1a.png b/mr/ub10/A1a.png new file mode 100644 index 0000000..3f57430 --- /dev/null +++ b/mr/ub10/A1a.png Binary files differ diff --git a/mr/ub10/A1b.png b/mr/ub10/A1b.png new file mode 100644 index 0000000..85a7f96 --- /dev/null +++ b/mr/ub10/A1b.png Binary files differ diff --git a/mr/ub10/A2/A2.m b/mr/ub10/A2/A2.m index 3c4f4de..3f72f35 100644 --- a/mr/ub10/A2/A2.m +++ b/mr/ub10/A2/A2.m @@ -109,6 +109,7 @@ cp= goal; path =goal; + while ~isequal(cp,start) neighbours=[]; for x = [cp(1)-1:cp(1)+1] @@ -130,4 +131,4 @@ end path latexmat(path, '%g') - + diff --git a/mr/ub10/mr10.pdf b/mr/ub10/mr10.pdf index f2a3a02..6b2a763 100644 --- a/mr/ub10/mr10.pdf +++ b/mr/ub10/mr10.pdf Binary files differ diff --git a/mr/ub10/mr10.tex b/mr/ub10/mr10.tex index 53adf0c..76cc542 100644 --- a/mr/ub10/mr10.tex +++ b/mr/ub10/mr10.tex @@ -89,10 +89,24 @@ \Aufgabe{Convex Hull Algorithms}{10} \begin{enumerate}[(a)] - \item done? - \item done? - \item ~ - +\item \includegraphics[width=0.7\linewidth]{A1a} + \item \includegraphics[width=0.7\linewidth]{A1b} + ~\\$ \begin{tabular}{|c|c|c|c|c|c|c|c|c|c|} + 1&2&3&4&5&6&7&8&9&10\\ + \hline + 2&3&4&5&6&7&8&9&10&9\\ + 1&2&2&4&4&6&7&8&9&8\\ + & 1&1&2&2&4&6&7&8&7\\ + && &1&1&2&4&6&7&6\\ + &&&& &1&2&4&6&4\\ + &&&&&& 1&2&4&2\\ + &&&&&&& 1&2&1\\ + &&&&&&&& 1&\\ + &&&&&&&&&\\ + \end{tabular}$\\ + S pushes the new point if it is on the left of the line through the two highest elements of the stack.\\ + S pops elements until the new point is on the right of the resultin line. + \item \pagebreak~ \includegraphics[width=0.48\textwidth]{A1c/step1} \includegraphics[width=0.48\textwidth]{A1c/step2} \includegraphics[width=0.48\textwidth]{A1c/step3} @@ -104,6 +118,7 @@ \item Sklansky's algorithm runs in linear time, i.e. $\mathcal{O}(n)$ \item QuickHull has a worst case runningtime of $\mathcal{O}(n^2)$, when there are no points that can be ignored. A geometric example of the worst case is a cylindric obstacle because a circle doesn't allow any point to be ignored because the drawn line is always nearer to the circles center then a point on the circle. \end{enumerate} + \pagebreak \Aufgabe{Path Planning by dynamic programming}{10} \begin{enumerate}[(a)] \item $\left[ \begin{array}{cccccccccc}