diff --git a/mr/ubB/mrB.pdf b/mr/ubB/mrB.pdf index 81558bf..161890d 100644 --- a/mr/ubB/mrB.pdf +++ b/mr/ubB/mrB.pdf Binary files differ diff --git a/mr/ubB/mrB.tex b/mr/ubB/mrB.tex index 7b842e5..997130f 100644 --- a/mr/ubB/mrB.tex +++ b/mr/ubB/mrB.tex @@ -56,7 +56,7 @@ \aufgTable{#7} \end{flushright} \end{minipage} -\vspace{1cm} +\vspace{0.5cm} \begin{center} {\Large\bf Assignment #1} @@ -72,26 +72,22 @@ %Kommando für Aufgaben %\Aufgabe{AufgTitel}{Punktezahl} \newcommand{\Aufgabe}[2]{\stepcounter{n} -\textbf{Exercise \arabic{n}: #1} (#2 Punkte)\\} +\textbf{Exercise \arabic{n}: #1} (#2 Punkte)} \newcommand{\Normal}[3]{\mathcal{N}\left(#1,#2,#3\right)} \newcommand{\Normalf}[3]{\frac{\left|#3\right|^{-\frac{1}{2}}}{\sqrt{2\pi}}e^{-\frac{\left(#1 - #2 \right)^2\cdot \left(#3\right)^{-1}}{2}}} - - - \begin{document} %\header{BlattNr}{Tutor}{Abgabedatum}{Vorlesungsname}{Namen}{Semester}{Anzahl Aufgaben} \header{11}{}{2015-07-14}{Mobile Robots}{ \textit{Jan-Peter Hohloch}\\ \textit{Maximus Mutschler} }{SS 15}{3} - \vspace{1cm} - + \vspace{0.2cm} \Aufgabe{Graph Search}{8} \begin{enumerate}[(a)] \item $(s)\rightarrow s:(b,e)\rightarrow b:(e,a,c)\rightarrow e:(a,c,f,g)\rightarrow a:(c,f,g)\\\rightarrow c:(f,g,d)\rightarrow f:(g,d,h,z)\rightarrow z$ found $path=(s,e,f,z)$ \item $((s,0))\rightarrow s: ((b,1),(e,1))\rightarrow b: ((e,1),(a,2),(c,7))\rightarrow e: ((a,2),(g,2),(c,7),(f,7)) \\\rightarrow a:((g,2),(c,5),(f,7))\rightarrow g: ((h,3),(c,5),(f,7),(z,8))\\\rightarrow h:((z,4),(c,5),(f,7))\rightarrow (z,4), path=(s,e,g,h,z)$ - \item $(s,0+2)\rightarrow s:((e,1+1),(b,1+3))\rightarrow e:((g,2+0),(b,1+3),(f,7+1))\\\rightarrow g:((b,1+3),(h,3+1),(z,8+0))\rightarrow b:((h,3+1),(a,2+4),(z,8+0),(c,7+3))\\\rightarrow h:((z,4+0),(a,2+4),(c,7+3))\rightarrow z: path=(s,e,g,h,z)$ + \item $(s,0+2)\rightarrow s:((e,1+1),(b,1+3))\rightarrow e:((g,2+0),(b,1+3),(f,7+1))\\\rightarrow g:((b,1+3),(h,3+1),(z,8+0))\rightarrow b:((h,3+1),(a,2+4),(z,8+0),(c,7+3))\\\rightarrow h:((z,4+0),(a,2+4),(c,7+3))\rightarrow z: path=(s,e,g,h,z)$\\ \end{enumerate} \Aufgabe{Nonholonomic Constraints}{4} \begin{enumerate}[(a)] @@ -99,12 +95,31 @@ x\\y\\\theta \end{pmatrix}, f(t,\vec{q},\dot{\vec{q}})=\begin{pmatrix} 0&1&0 - \end{pmatrix}q(t)-\begin{pmatrix} + \end{pmatrix}\begin{pmatrix} + \cos\theta&-\sin\theta&0\\ + \sin\theta&\cos\theta&0\\ + 0&0&1 + \end{pmatrix}\left(q(t)-q(t+1)\right)\\=\begin{pmatrix} 0&1&0 - \end{pmatrix}q(t+1)=\begin{pmatrix} - 0&1&0 + \end{pmatrix}\begin{pmatrix} + \cos\theta&-\sin\theta&0\\ + \sin\theta&\cos\theta&0\\ + 0&0&1 + \end{pmatrix}\dot\vec q\\ + =\begin{pmatrix} + \sin\theta & \cos\theta & 0 \end{pmatrix}\dot\vec q=0$ - \item nonholonomic, because the derivative of q is used + \item nonholonomic, because the derivative of q is used\\ + \end{enumerate} + \Aufgabe{Reeds-Shepp-Curves}{8} + \begin{enumerate}[(a)] + \item As the tangent is always perpendicular to the radius there are right triangles. So for $r_1=r_2=r$ we can calculate:\\ + $d=2\cdot \sqrt{dist(\mathbf{s'},\mathbf{g'})^2-r^2}$\\ + For $r_1\not=r_2$ we can use:\\ + $d=\sqrt{dist(\mathbf{s'},\mathbf{g'})^2-(r_1+r_2)^2}$\\ + There geometrical explanation is to translate $r_2$ and append it to $r_1$. Then there is only one right triangle and we again can calculate the pythagorean. + \item $\delta(\alpha_r,\mathbf{s'},\mathbf{g'},\alpha_l)=r\alpha_r+d+r\alpha_l=r\alpha_r+2\cdot\sqrt{dist(\mathbf{s'},\mathbf{g'})^2-r^2}+r\alpha_l$ + \item $\delta(\alpha_r,\mathbf{s'},\mathbf{g'},\alpha_l)=r_1\alpha_r+d+r_2\alpha_l=r_1\alpha_r+\sqrt{dist(\mathbf{s'},\mathbf{g'})^2-(r_1+r_2)^2}+r_2\alpha_l$ \end{enumerate} \end{document}