diff --git a/is/UB1/ISUB1.pdf b/is/UB1/ISUB1.pdf index 2a82d91..52fef6a 100644 --- a/is/UB1/ISUB1.pdf +++ b/is/UB1/ISUB1.pdf Binary files differ diff --git a/is/UB1/ISUB1.tex b/is/UB1/ISUB1.tex index 71831be..b5a7b9e 100644 --- a/is/UB1/ISUB1.tex +++ b/is/UB1/ISUB1.tex @@ -69,7 +69,7 @@ %Kommando für Aufgaben %\Aufgabe{AufgTitel}{Punktezahl} \newcommand{\Aufgabe}[2]{\stepcounter{n} - \indent\textbf{Exercise \arabic{n}: #1} (#2 Points)\\} + \textbf{Exercise \arabic{n}: #1} (#2 Points)\\} @@ -95,13 +95,19 @@ one pair:\\ ${13\choose 1}{3\choose 2}{12 \choose 3}\cdot 3^3=231660$\\ $\mathds{P}(1\ pair|\neg Spades)=\frac{231660}{575757}=\frac{1980}{4921}\approx 0.402$ - \item $A:=1\ pair,\ B:=\neg Spades$\\ - $P(A|B)=\frac{P(B|A)P(A)}{P(B)}$\\ - $P(A)=\frac{352}{833},\ P(B)=\frac{39}{52}\cdot\frac{38}{51}\cdot\frac{37}{50}\cdot\frac{36}{49}\cdot\frac{35}{48}=\frac{2109}{9520}$\\ - $P(B|A)=1-P(\neg B| A)=1-\left(\frac{1}{4}+\frac{3}{4}\frac{1}{4}+\left(\frac{3}{4}\right)^2\frac{1}{4}+\left(\frac{3}{4}\right)^3\frac{1}{4}+\left(\frac{3}{4}\right)^4\frac{1}{3}\right)=1-\frac{101}{128}=\frac{27}{128}\approx 0.211$\\ - $P(A|B)=\frac{\frac{27}{128}\cdot \frac{352}{833}}{\frac{2109}{9520}}=\frac{1980}{4921}\approx 0.0402$%TODO + \item \begin{enumerate}[(i)] + \item $A:=1\ pair,\ B:=\neg Spades$\\ + $P(A|B)=\frac{P(B|A)P(A)}{P(B)}$\\ + $P(A)=\frac{352}{833},\ P(B)=\frac{39}{52}\cdot\frac{38}{51}\cdot\frac{37}{50}\cdot\frac{36}{49}\cdot\frac{35}{48}=\frac{2109}{9520}$\\ + $P(B|A)=1-P(\neg B| A)=1-\left(\frac{1}{4}+\frac{3}{4}\frac{1}{4}+\left(\frac{3}{4}\right)^2\frac{1}{4}+\left(\frac{3}{4}\right)^3\frac{1}{4}+\left(\frac{3}{4}\right)^4\frac{1}{3}\right)=1-\frac{101}{128}=\frac{27}{128}\approx 0.211$\\ + $P(A|B)=\frac{\frac{27}{128}\cdot \frac{352}{833}}{\frac{2109}{9520}}=\frac{1980}{4921}\approx 0.402$ + \item $A:=2\ pairs,\ P(A)=\frac{198}{4165}$, B as above\\ + $P(B|A)=1-\left(\frac{1}{4}+\frac{3}{4}\cdot\frac{1}{4}+\left(\frac{3}{4}\right)^2\cdot\frac{1}{4}+\left(\frac{3}{4}\right)^3\cdot\frac{1}{3}+\left(\frac{3}{4}\right)^3\frac{2}{3}\cdot\frac{1}{3}\right)=\frac{3}{16}$\\ + $P(A|B)=\frac{\frac{3}{16}\cdot \frac{198}{4165}}{\frac{2109}{9520}}=\frac{198}{4921}\approx0.0402$ + \end{enumerate} \end{enumerate} \end{enumerate} +\pagebreak \Aufgabe{Random Variables}{2+2+2=6} \begin{enumerate} \item $F\left(\frac{3}{2}\right)-F\left(\frac{1}{2}\right)=\frac{3}{4}-\frac{1}{4}=\frac{1}{2}$ @@ -119,10 +125,18 @@ 0 & if\ x<0\\ \frac{\sqrt{2}}{2}\sqrt{x} & if\ 0\leq x\leq 2\\ 1 & if\ x>2 - \end{cases}$ + \end{cases}$%TODO: adjust intervals \end{enumerate} \Aufgabe{Keep Rolling!}{4} - $\mathds{E}(X)=\frac{1}{\frac{1}{6}}=6$ (geometric distribution)\\ - $\mathds{E}(X)=?$%TODO: Explain + \begin{align*} + \mathds{E}(X) + &=\sum\limits_{i=1}^{\infty} i\cdot p\cdot \left(1-p\right)^{i-1}\\ + &=p\cdot\sum\limits_{i=1}^{\infty} i\left(1-p\right)^{i-1}\\ + &=p\cdot \frac{d}{dp}\left[ -\sum\limits_{i=0}^{\infty}\left(1-p\right)^i\right] &\text{(geometric series)}\\ + &=p\cdot \frac{d}{dp}\left(-\frac{1}{p}\right)\\ + &=p\cdot \frac{1}{p^2}\\ + &=\frac{1}{p} + \end{align*} + $\Rightarrow\mathds{E}(X)=\frac{1}{p}=\frac{1}{\frac{1}{6}}=6$ \end{document}