diff --git a/is/ub6/is6.pdf b/is/ub6/is6.pdf index e5c3cbb..bcc8c45 100644 --- a/is/ub6/is6.pdf +++ b/is/ub6/is6.pdf Binary files differ diff --git a/is/ub6/is6.tex b/is/ub6/is6.tex index f4b13a4..c7b5f55 100644 --- a/is/ub6/is6.tex +++ b/is/ub6/is6.tex @@ -97,7 +97,7 @@ \node[circle, draw] (C) [below of=B] {C}; \node[circle, draw] (D) [below right of=B] {D}; - \draw (D)--(B); + \draw (B)--(D); \draw (A) -- (B); \draw (C) -- (B) ; \end{tikzpicture} diff --git a/mr/ub6/UB6.pdf b/mr/ub6/UB6.pdf index d604f3f..0ef0061 100644 --- a/mr/ub6/UB6.pdf +++ b/mr/ub6/UB6.pdf Binary files differ diff --git a/mr/ub6/UB6.tex b/mr/ub6/UB6.tex index 1c2cf45..d3c8ee7 100644 --- a/mr/ub6/UB6.tex +++ b/mr/ub6/UB6.tex @@ -148,21 +148,21 @@ 0&0&1 \end{pmatrix} $\\$ - p_{R0}= K\cdot \begin{pmatrix} + c_{R0}= K\cdot \begin{pmatrix} 0.3&0.2&1.0 \end{pmatrix}^T = \begin{pmatrix} 470\\ 340\\ 1 \end{pmatrix}\\ - p_{R1}= K\cdot \begin{pmatrix} + c_{R1}= K\cdot \begin{pmatrix} 0.26&0.21&1.0 \end{pmatrix}^T= \begin{pmatrix} 450\\ 345\\ 1 \end{pmatrix}\\ - p_{R2}=K\cdot \begin{pmatrix} + c_{R2}=K\cdot \begin{pmatrix} -0.25&-0.1&1.0 \end{pmatrix}^T = \begin{pmatrix} 195\\ @@ -170,8 +170,17 @@ 1 \end{pmatrix} $ - Epipolar Line: $ =E \cdot p_L^T $ wie bekomm ich daraus ne linie? %TODO \\ - epipolatpunkt $E^T*e_2 =0$ + Epipolar Line: $ + c_{L}^T\cdot F \cdot c_{R}=0\\ + \Leftrightarrow \begin{pmatrix} + a&b&c + \end{pmatrix} \cdot \begin{pmatrix} + x \\y\\1 + \end{pmatrix}=0\\ + \Leftrightarrow + y=-\dfrac{a}{b}x-\dfrac{c}{b}\\ + y=--0.2x-432.761\\ + $ \end{enumerate} \Aufgabe{RANSAC}{4} \begin{enumerate}[(a)] diff --git a/mr/ub7/mr7.pdf b/mr/ub7/mr7.pdf index 4414cf0..3ac4291 100644 --- a/mr/ub7/mr7.pdf +++ b/mr/ub7/mr7.pdf Binary files differ diff --git a/mr/ub7/mr7.tex b/mr/ub7/mr7.tex index 4135b47..84bac25 100644 --- a/mr/ub7/mr7.tex +++ b/mr/ub7/mr7.tex @@ -89,11 +89,11 @@ $\Leftrightarrow A=(1-A)F$\\ $\Leftrightarrow A=\left(1+\frac{1}{F}\right)^{-1}=\left(1+\frac{1-B}{B}\frac{1-C}{C}\frac{D}{1-D}\right)^{-1}=\left(1+\frac{1-p(m_i|z_t)}{p(m_i|z_t)}\frac{1-p(m_i|z_{1,\dots,t-1})}{p(m_i|z_{1,\dots,t-1})}\frac{p(m_i)}{1-p(m_i)}\right)^{-1}\\ $ - \item $\left(1+\frac{1-p(m_i|z_t)}{p(m_i|z_t)}\frac{1-a}{a}\cdot b \right)^{-1}$\\ 3 Add/Sub, 4 Div/Mult + \item $\left(1+\frac{1-p(m_i|z_t)}{p(m_i|z_t)}\frac{1-a}{a}\cdot b \right)^{-1}$\\ 3 Add/Sub, 5 Div/Mult \item $o(m_i|z_{t,\dots,1})=\frac{p(m_i|z_t)}{1-p(m_i|z_t)}\frac{p(m_i|z_{1,\dots,t-1})}{1-p(m_i|z_{1,\dots,t-1})}\frac{1-p(m_i)}{p(m_i)}=\frac{p(m_i|z_t)}{1-p(m_i|z_t)}\frac{a}{1-a}b$\\ - 2 Add/Sub, 3 Div/Mult\\ - $ log(o(m_i|z_{t,\dots,1}))= log(p(m_i|z_t))-log(1-p(m_i|z_t))+log(a)-log(1-a)+b $\\ - 4 Add/Sub, 4 logs \\ + 2 Add/Sub, 4 Div/Mult\\ + $ log(o(m_i|z_{t,\dots,1}))= log(p(m_i|z_t))-log(1-p(m_i|z_t))+log(a)-log(1-a)+c $\\ + 6 Add/Sub, 4 logs \\ \item$ p(m_i|z_{1,\cdots,5})=4.3622*10^{-5}$\\ Rechenweg Matlab siehe Abbildung \ref{fig:1dMatlab}: \begin{figure} @@ -130,7 +130,7 @@ [.g w g b b ] g [.g b b w w ] - [.g b b b w ] + [.g w b w w ] ] [.g [.g b b b w ] @@ -144,13 +144,13 @@ \item %Die meisten nötigen Änderungen am Baum verursacht eine Änderung in einem zusammenhängenden Quadrat, also beispielsweise links oben in der Ecke. Eine Änderung dort bewirkt vier neue Knoten und einen geänderten.\\ % Die wenigsten nötigen ergeben sich, wenn ein ohnehin einzelnes Gridfeld geändert wird. Dabei darf jedoch der Baum nicht kleiner werden. Dies ist beispielsweise der Fall bei dem Feld links unten.\\ - \\Grid cells with as many operations as possible to have their values changed are those belonging to a leaf node with the lowest level and holding the value occupied or free. One example in this qtree is the quadrad in the upper left corner. Changing the value of one grid cell of this quadrad results in 4 new nodes and the change of the value of their parent node to grey. - \\Grid cells with as few operations as possible to have their value changed are all leaf nodes on the highest level. Here only the color value of the nodes has to be changed. E.g the black cell in the lower left corner. + Grid cells with as many operations as possible to have their values changed are those belonging to a leaf node with the lowest depth and holding the value occupied or free. One example in this qtree is the quadrad in the upper left corner. Changing the value of one grid cell of this quadrad results in 4 new nodes and the change of the value of their parent node to grey. + \\Grid cells with as few operations as possible to have their value changed are all leaf nodes with the highest depth. Here only the color value of the nodes has to be changed. E.g the black cell in the lower left corner. \item $256^2=\left(2^8\right)^2=4^8$\\ - $\Rightarrow$ maxdepth: 8\\ + $\Rightarrow$ maxdepth: 8 \\ According to the definition of the depths of a general tree it has to be 9 % $\Rightarrow$ maxnodes: $\sum\limits_{i=0}^9\frac{4^9-1}{4-1}=87381$ - $\Rightarrow$ maxnodes: $\sum\limits_{i=0}^4 2^{2i}=345$ + $\Rightarrow$ maxnodes: $\sum\limits_{i=0}^8 4^{i}=\frac{4^9-1}{4-1}=87381$ \end{enumerate} \Aufgabe{Topological Maps}{5} \begin{enumerate}[(a)]