diff --git a/is/kaggle/ExerciseSheetKaggle.ipynb b/is/kaggle/ExerciseSheetKaggle.ipynb
new file mode 100644
index 0000000..8744b56
--- /dev/null
+++ b/is/kaggle/ExerciseSheetKaggle.ipynb
@@ -0,0 +1,933 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "preamble": true
+ },
+ "source": [
+ "(Defining latex commands: not to be shown...)\n",
+ "$$\n",
+ "\\newcommand{\\norm}[1]{\\left \\| #1 \\right \\|}\n",
+ "\\DeclareMathOperator{\\minimize}{minimize}\n",
+ "\\DeclareMathOperator{\\maximize}{maximize}\n",
+ "\\newcommand{\\real}{\\mathbb{R}}\n",
+ "\\newcommand{\\blasso}{\\beta^{\\mathrm{LASSO}}}\n",
+ "\\newcommand{\\bzero}{\\beta^0}\n",
+ "\\newcommand{\\bLS}{\\hat{\\beta}^{\\mathrm{LS}}}\n",
+ "$$"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Weight shrinkage competition\n",
+ "\n",
+ "In this competition you will work on a real world dataset. The objective is to try and predict weight of some person using historical data collected over several years.\n",
+ "\n",
+ "The competition is hosted on [Kaggle website](https://inclass.kaggle.com/c/weightshrinkage). This competition is by invitiation only, we will send out invitations to all emails registered on the Google mailing list. You can participate in groups of two or individually, Kaggle will help you how to participate in groups.\n",
+ "\n",
+ "In order to get a full mark for this competition you should get pass the benchmark evaluation. In this sheet you will get an idea how to do that."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Interploation techniques\n",
+ "\n",
+ "The dataset you will be working with is an instance of a time series. Time series are different from what you may typically see in Machine Learning problems. The most important distinction between a time series and other datasets is that data points are no longer iid (**i**ndependently and **i**dentically **d**istributed).\n",
+ "\n",
+ "Analysis of time series is a rich field of study. Here we show you one very simple method to work with time series. The dataset you download from the website contains many NA (**N**ot **A**ssigned) values. These missing values arise naturally in many datasets. Sometimes measurements are not made for every record or sometimes the data is corrupted. In this case, most NA values are cases where no measurement was made.\n",
+ "\n",
+ "Since the dataset is a time series one simple approach is to fill in the NA values with neighboring values. This works particularly well when missing values are scattered and there are no missing values in long continuous ranges. Unfortunately our dataset suffers from this issue but we will use this technique as a first step. Feel free to use other methods to improve your result. Our objective is to fill in missing values for the *Weight* vector which is our target variable via interpolation.\n",
+ "\n",
+ "## Interpolation in Python\n",
+ "\n",
+ "You can do interpolation in Python using many different packages. Here we use [Pandas](http://pandas.pydata.org/) which is a common library for data analysis. The difference between Pandas and Numpy is the way data is layed out in memory which makes many operations efficient and easy.\n",
+ "\n",
+ "As usual we start with loading the package:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 68,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+ "source": [
+ "import pandas as pd"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Pandas provide similar, and sometimes more advanced, functionalities for loading different kinds of data. One if its particular strength is in working with time series data."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 76,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " ID | \n",
+ " FoodWeight | \n",
+ " Weight | \n",
+ " Calories | \n",
+ " Proteins | \n",
+ " Lipids | \n",
+ " Carbohydrates | \n",
+ " Remarks | \n",
+ "
\n",
+ " \n",
+ " | Date | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 2013-06-11 | \n",
+ " 401 | \n",
+ " 30.92 | \n",
+ " 91.3 | \n",
+ " 2107 | \n",
+ " 156 | \n",
+ " 43 | \n",
+ " 270 | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " | 2013-06-12 | \n",
+ " 402 | \n",
+ " 30.31 | \n",
+ " 91.4 | \n",
+ " 2057 | \n",
+ " 125 | \n",
+ " 40 | \n",
+ " 293 | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " | 2013-06-13 | \n",
+ " 403 | \n",
+ " 34.11 | \n",
+ " 91.2 | \n",
+ " 2151 | \n",
+ " 119 | \n",
+ " 33 | \n",
+ " 341 | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " | 2013-06-14 | \n",
+ " 404 | \n",
+ " NaN | \n",
+ " 91.7 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " VisitTo | \n",
+ "
\n",
+ " \n",
+ " | 2013-06-15 | \n",
+ " 405 | \n",
+ " 28.95 | \n",
+ " NaN | \n",
+ " 2418 | \n",
+ " 160 | \n",
+ " 47 | \n",
+ " 311 | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " | 2013-06-16 | \n",
+ " 406 | \n",
+ " NaN | \n",
+ " 91.8 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " VisitTo | \n",
+ "
\n",
+ " \n",
+ " | 2013-06-17 | \n",
+ " 407 | \n",
+ " 31.00 | \n",
+ " 92.6 | \n",
+ " 2211 | \n",
+ " 171 | \n",
+ " 49 | \n",
+ " 264 | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " | 2013-06-18 | \n",
+ " 408 | \n",
+ " 36.42 | \n",
+ " NaN | \n",
+ " 2274 | \n",
+ " 167 | \n",
+ " 23 | \n",
+ " 342 | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " | 2013-06-19 | \n",
+ " 409 | \n",
+ " 38.14 | \n",
+ " 91.9 | \n",
+ " 2274 | \n",
+ " 137 | \n",
+ " 33 | \n",
+ " 346 | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " | 2013-06-20 | \n",
+ " 410 | \n",
+ " NaN | \n",
+ " 91.7 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " VisitTo | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " ID FoodWeight Weight Calories Proteins Lipids \\\n",
+ "Date \n",
+ "2013-06-11 401 30.92 91.3 2107 156 43 \n",
+ "2013-06-12 402 30.31 91.4 2057 125 40 \n",
+ "2013-06-13 403 34.11 91.2 2151 119 33 \n",
+ "2013-06-14 404 NaN 91.7 NaN NaN NaN \n",
+ "2013-06-15 405 28.95 NaN 2418 160 47 \n",
+ "2013-06-16 406 NaN 91.8 NaN NaN NaN \n",
+ "2013-06-17 407 31.00 92.6 2211 171 49 \n",
+ "2013-06-18 408 36.42 NaN 2274 167 23 \n",
+ "2013-06-19 409 38.14 91.9 2274 137 33 \n",
+ "2013-06-20 410 NaN 91.7 NaN NaN NaN \n",
+ "\n",
+ " Carbohydrates Remarks \n",
+ "Date \n",
+ "2013-06-11 270 NaN \n",
+ "2013-06-12 293 NaN \n",
+ "2013-06-13 341 NaN \n",
+ "2013-06-14 NaN VisitTo \n",
+ "2013-06-15 311 NaN \n",
+ "2013-06-16 NaN VisitTo \n",
+ "2013-06-17 264 NaN \n",
+ "2013-06-18 342 NaN \n",
+ "2013-06-19 346 NaN \n",
+ "2013-06-20 NaN VisitTo "
+ ]
+ },
+ "execution_count": 76,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "data = pd.read_csv(\"./datasets/kag_train.csv\",index_col='Date',parse_dates='Date')\n",
+ "data[400:410]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "This line loads the data, treats *Date* field in the dataset as Datetime and sets *Date* column as the index of the loaded Table. The standard data structure in Pandas is *Dataframe*, a dataframe contains several *Series* with the same index. If the index is a time series Panda will automatically constructs appropriate indexing. Also note that Pandas detects NA values automatically."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 77,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 77,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXIAAAElCAYAAAD5r2lGAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnXm4HEW1wH+XTUDEEUUFlXsR0IAkIAoqAWn2JXHHCOjz\nBVyQRUBl8+ESlU0QETUoBiFhF8EFCIRNLvsmmyGyL2GTnRDAAEmo98c51V3T0zN35t6e6Z655/d9\n97vTW9Wp7pnTp06dOgWGYRiGYRiGYRiGYRiGYRiGYRiGYRiGYRiGYRiGYRgtsWTRAhhGyZgCfA34\na5vruRBYAvhXE+cOIr/V29opkNG9LFG0AIaRMw8DW4zgetfg2D3ApGB7PPBGxr75DP3b2gE4tQWZ\n6sk1oDLYb3kUYw/faCdLFVCXA/raVMeVwCeD7U8Cd2fsuw5Rrp2kXW02ugBT5EbePAwciLgMXkK+\nYx9HlNsLwO3AZsH5g8ARwI3Ai8DfgLcFxz8NzNFrrwDGZNR1B/AycAawGnC+1r2/nteo/tURBT0f\nuAR4R4O2XUW10t4E+Hlq36Z63lD1DiIuHBC3yTHAM8CDwN7UWtkDwDUq58XA2wOZAOZpmz/WQH7D\nMIymeBi4FXgP8Cb9/yywnR7fSre9IhoEHgPWAZYHziFxOXwAUdBbIsruAOA+Eus7XRfAQ1S7Voaq\n/3rgF8DSiBKeD5xSp239wGKggijZp4BlgUeCffMQBT9UvVcAu+nnbyEvq1W1nMu0Hq/IB4H7gTW1\nviuQl5+XyVwrhmHkykPA5GD7IGoV4yzgq/r5CuDw4NjawGuIYvohcFZwrA9R+t4CTtfl94WKvFH9\nqwELgeWCY6fT2Hf9ENJL+DBiIQOcGez7L/JSaKbdXpH/A/hGcN6WVCvnK4D/C47vAVyknwcwRT7q\nsYdvtINHg8/9wBcR94L/Gw+8u875jyCK8B3AKrrtcXrue+pcm0Wj+lfV7QXB+XOHKM+7V0IXyjW6\n75OIi2jhEPWmWSXVjscyznky+LwAWGEIOY1RRCcHo4zRQxhh8Qhi4X6zwfmrpT4vRPzFTwBjg2N9\nwPuAx+vUlbXdqP5+xB+/PGJJ+32LG8h6FbA7ovBP0n1XA/+r+7xyb6bdnv8g7fK8r96JGTSKsjEM\nwxgWadfGexFFtQ3i514WiEis6kHEGl0bUah/Bk7TYx9EfORbIFb6/oiv2Bsg6bpAfN6hm2Ko+q8H\njtbyN0EGXOv5yAHWAhYh/vEVdV8f4v9+FnGLNFNv2kd+J4mP/FKqfeRXkAyMgriTrtbPy6s8azWQ\n2TAMoyWylOtGiMJ+DngaiSp5rx7zPnIftfJ3YKXg2s8iA4Hz9Ny1h6jr04hl/ALw3Qb1e6t3dcSK\nfgmJWvk1jRU5SE/h9tS+mYhvP/S3D9Vur8iXBH6JvAgeAPYDXg/KCc8Fsf6vCrZ/ouW/oHUaRhUn\nIZbH7GDfSojFcC/yxa8Ex76PRBXcjVgihjEUaSVlwPZIRI5h5MKmyEh8qMiPQmJ3QUbmj9TP6yBW\nytLISPr92GCqMTRpt8FoZFlkpudSiOvlBsRCN4zcGKBakd8NvEs/v1u3Qazxg4LzZiETIgyjEWaR\nizvmJiSG/Sngj1hUitECw4laeRfyZUP/e6W+KmJJeB6jOkzMMLLYvGgBSsACzLdtjICRuj4aJfNh\niGOGYRhGDgzHIn8Kcak8iUxkeFr3P051/Ot7qY73JThv1WHUaxiGMZp5ghF4OQaoHez0vvCDqR3s\nXAYJ6XqA7IxsQ1npU5qUK8/zRkOdna6vlfO6vc48y8qzzjzrGy115llW3nUO28NxJvIWeB2ZtLEr\nEn54Gdnhh/+HRKvcDWw7TGGiJmXL87wy1zk9pzqbra+I87q9zmbLmt7hOps5J+/zur3OZsuaXkCd\npXJVl0qYLmB60QIYuTG9aAGM3JheQJ2l0p2lEqYLiIoWwMiNqGgBjNyICqizVLqzVMIYhmF0CXV1\np828LD9R0QIYuREVLYCRG1HRAoSYIjcMwzBaxlwrhmEYrWOuFcMwjF7FFHn5iYoWwMiNqGgBjNyI\nihYgxBS5YRiG0TLmIzcMw2gd85EbhmH0KqbIy09UtABGbkRFC2DkRlS0ACGmyA3DMIyWMR+5YYwK\n3ARwldS+iuw3hkGpdGephDEMo124CripiTJPbxstUirdWSphuoCoaAGM3IiKFqDzuAq434FzPabE\nowLqtKgVwzCKoG8ecLxuHKPbRg9gFrlhjBpcBdyJapH/oYcs8iIole4slTCGYbSL2Cf+QVXkH+gx\n90qnKZXuLJUwXUBUtABGbkRFC9BZfNSKW00V+Ro9FLUSFVCn+cgNw+g0fTOB8ciC7QDLq4/82h5R\n5qMas8gNY9TgKuDOUIv84xaCOCJKpTtLJYxhGO3GjVdFvosp8RFRKt1ZKmG6gKhoAYzciIoWoBjc\nR1SRO3ADRUuTE1EBdZqP3DCMwvA+8m8AB5hF3huYRW4YowZXAfcXtcY/bz7yEVEq3VkqYQzDaCdu\nArjPqCKfpPt6JQSxTdRLNmaulW4mKloAIzeiogXoLG4CcC3wuu5YShXSeA1N7GaiNpb9ZuDo6mRj\nHN3oAlPkhmG0i2uBwwBvXa6o29cWJlF3cIn+vwjc2QyhxEfKvsBs4E79DLARcBNwG3AzsGHGdeZa\nMYxRg6uAm6WulcvNN94srgLuNb1vpwzlWhku6yJKfFlgSeBSYA1gENhWz9keuCJLwryFMQyjzLi9\nVSF9v2hJugdXCUI2h1Tkw3WtjAFuBF4FFgNXAp8HngDequdUgMeHWb6REBUtgJEbUdECdB5XAdYG\nTgO26yGLPGpf0bFP/BLEOH6NNvnI7wQ2ReJDlwcmAO8FDgZ+CTyiFdsb2DBGLa6C+MQPAV4ALpTt\nnlHm7WIb/T8VeAM4oJ2V7Qb8E7HGjweORVwsn9PjX9TtNOZaMYxRQRhG534J7rsWetgMcdbI/cHd\npPsaulaWGkFtJ+kfyFv3MeBrwNa67xzgxDrXTgce1s/zgNuRLgQkXRbbtm3b7urtvpnB9iJgKehb\nH3iFhBLJW5btvleAebDnazBvHCx3BvTdS5t4p/5fDbgL8Y3fCmym+7dEIlfSmEXeGlHRAhi5ERUt\nQHG4w8H9X9FS5EjUvqJji/wb4B4Ed64kHGuPRX4O8HZgIbAn8CLwTcSv8yZggW4bhmGoRW40gY+/\nPxUxmB8HTi9UogzMIjeMUYf7EbifFi1F9+AmadjhK+Dmg7sNm6JvGEbBmEXeGpcg83SWR0K91290\nsiny8hMVLYCRG1HRAhRIhxR5vYRTuUfKRDmXl8WK+n8cEoZYF1PkhmF0gk5Z5Opfrko41WX5XWKZ\nd9cd76Q60qcUmI/cGMV0zGIsCXEExj7gfq372txeVwH3d3CndWfu8/ieTdIp+tPA/ZeS6c5SCWMY\nnSW9sEKvL7QQt+974I7vXHvdrnT10nJukipwB+5WcFdTMt1ZKmG6gKhoAYzciOSfq4C7H9yeva3E\nPa4CbhDcGR1S4t4iv6aN9UVtKDOgSpH/E9yFlEx3lkqYLiAqWgAjN6LkY5zadaAoYTqLG8hub96u\nptji316s2Lb1AKKcy8sgzoD4K3DPUzLdWSphDKPzuIrO2PvmKLLIp6oyT7U3b1dT7F/eENzNQZld\nOgbh7lZl/mdKpjtLJYxhdJZYUV0E7lOjyEeeoahjpVsBd6oq+mnEa3uOqN5x4P418nKKJL5X48A9\nQ8l0Z6mE6QKiogUwciMKlNeFiZXYzRbjUDRynVQp9fQiCiOt94Pg7hl5OXWJ2lg2wb3p1//HUzLd\nWSphuoCoaAF6j8JCAKOgvlngtmtzfV2Aq4CboUp8plrkeSjyAXAPj7ycukRtLJvgRef//4yS6c5S\nCWOMRsoQAuguAbfN0Of1OnGEiQP3+fyehXs3uP/kI2MZcD+ige60mZ3GKKRvHrJqzbHg9iZexaZv\nXgeFWJIhpl33Dg17QNuQKKj/0f+HAONHWNdrSK6SsK5uZmHRAqQxi7w1oqIF6F3cSXQ2BDAK6r4C\n3OYdqrdg6vaAvP93oj6Hz43cGo/LXgXcf9vY24pyLm8I3P6UTHeWSpguICpagN7EVSSqwbkOulWi\noP6rwG1W98y6dOsUf1cBdxu4raiNWpmgz+FT+bTFVWRw0C1OvUDyvHfRyGRsFbcfJdOdpRLGGI3E\nVtofVYEU4SO/Btwmw7iuBP794eKuy+4BxTlFvpBjXQO1dXX1vduLkunOUgljjEZiS/AP8mOHzlu1\n7jpwGw/z2oq6DTboIkVUAfcQuK9nWOSTVenunKNF3mgC0h/A3dE99w7AfZOS6c5SCdMFREUL0Lt4\ni7xjREHdN4L7ePZpzbgA4rjrgbyFzJ9Ysf4lUNZTVYFPE/+vc+D2YMQTgpqxut06Ody7aATXDgO3\nKw10p0WtGKOZJQusewlgcZ1jQ+TUjpXSdsABXWBVjkciUeYBywdRQ//V41/S/zvr/0tGXpePQIrr\n0igYVwG+jeRH74Z757GoFaOXGckAlju1wxZ5WPet4D7SQP5J4E4Gt1aGhXm8WpQbV1ucbhK4IzJc\nCZM66zZKE7tQfgNuH903Kfh7iCTL36T2ublqZpJ2k498J0qmO0sljNHtjGQAy51RoCK/Hdz6jeV3\n99e6ANwEcKvp/rNJcpX4tKcziGdHuop+zmm25HCJ23QsuO+n5BoL7lVtz1O63SblGr403UJwy7Tv\npZE37guUTHeWSpguICpagHLjJiDxyCcGSqC/8Y8zthD/RGcHO6NAhtngxgV1z6BqcM5VwM0DtwW4\nC5I2uQq4VVXxHYL4+f+cobzPAnd58Urc4yrIuMBvgjb2g/u3KtXn9Z7Mkf1tl+e/4N48ggKivCRp\nTPzMP03JdGephOkCoqIFKDextfeIKrdxQ1t08TV+aninuthRIMMccB8KtoPBy1ieh8CtqQpvdvCi\n+qSeO4m4VxEmm3LjKOVgqNu7WiY3CRkAdSSTs84kl+yHQ8oyb4TPO8pLksbE34UdKZnuLJUwRi/g\n+sEtUkUwuzmLzlWQnOCdnBAU1n8XuLUDWfyEmKkkfuKHwK2u5/SDuwmZUHMfSZKpE5GJL95VMU5f\nEmepci+LRe5dPwOBRT4ZSR42DtyT4E4gtzS2Q8rzDLh3tr+ePPD5aMqlO0sljNHtxBbL481b5PG1\nPyvOanX3IqlWK+B+p3JsUN07cI+AWy245mo9b0f9f7metxDcymrNOlXiZfORB3LErqQ5QS/jcGTm\nZz8debG6x8G9p7115Inbgga608IPy09UtAAlZz/g98BKur27bu/X+DJXAVYB5tNUGFoe07sPOjgo\nYwlgU+CzwE26T5M8cSUSLhck1nIVYDVgT+DHwB3JMRYAywFvA44HXpLdffOkbVzKsJNQ5cJ4leFQ\n4EJgDeBdwFTgC0h44FPADcC6jChp1lDEz3EhsAzJGEsYo9/Mc43aI18WroLcp1JhFnlrREULUG5i\n//ECtUb9dgP3Smz1vhfcS9VW8JDXDCM6xjNmYmBtPwRuE5V1vMr+6VQdTyLJn3xd/yAZ+LwP3F66\n/xkkVHEEsrWbWKYbs3tObg/pmXRMjvvBfaD2+9L0vYvaLalQJU+pdGephDG6ndii8oN7rUStLCcv\nAGjOCsua+t2qpe4qSMIsp+6FyeDO1e0LSFwPE1RB70LiM78R3M+1fVeCO0b3vwhuz+ZlKArXD+5Z\ncMfVvmzd18D9sUNy+DGJE4Pvy/3IwHLZXoDh96tUurNUwhi9gvspLfu73dLgFrVYz0B1PcOx1N3p\nWsYn9PwLSaaohz7y58GtHmz/Ddw3VAmeieQtqYB7AdxGrbWj08Tt8uMBaYv8f8Cd1kF5UlE9ZYzy\nqaEtunNfYDZwp372fBu4S/f/vFPC9DBR0QKUH1dBwvD+QzKgFi7sm7E2ZnzcgesLjk+pb2FnWeTx\n8TpJmqqI9Nw7tN7papF7Re5Ufh8z/mLQhpl6fBaJO8BHpfwL3Aa1bSwTcc/pBnC/pabn5L4E7uxh\nlNniuEVmD25s9sulIVFrsuZC7rpzXUSJL4sMyFyKDGBsrp+X1vNW7oQwPU5UtADlJlaiHwH3AEl0\nRL8qvRmBMgyUR7y9CNxSqeONFkGoY3lnpU2NZdT6Yh/5L/XcfZDIjVmBYjkzeBm9DO4tWoZPLLW3\nbn+MJH78RsTPXiH2odfco4KVe3y/foy4h9L377Pg/jaMMoP2pp9x5jX+Jejv91hwz+nnlWrlqkvU\nmqy5kLvu3BE4Mdj+ATI6/idgi04LY4xmYqW8BhIX7uPDj1Ml/iCSw6OeMl4EbkzG/leR8MAmfOFD\nWeTxce/rPkIVx9dVpqMCxTIH3GS9bgG45fWaK/T4JUE7BlTpP4H40pt44RRFfJ++Jy+yWDZvke8A\n7sJhlOsV87js9mfK4S3yV/VF4F+K76iVq1TkrjvHAPcgIV/LA9cBvwZuA6YgYUSDwEc7IYxhqFJ7\nWn+EZ5PMktxOP29SR8nOI9OSdvODMppR4kMozipl72ehvl33n4/4uR1iWfuXx2vIANwF4L6rx/ej\nNsrC+9wHUnVtWA4lHuL2BffrYNvfw63AXab7WlSk8UzWLZpvb3w/B/Q5OHDvaqkpnSf3OPK7Ef/3\nJcBFwO1ISs6lkFjWjyMWej2f13RE4U9B4n2j4Fhk21Xbdn+a214MLITTT4OZGwBHAz+Bi34Hl78C\nXA2cAH3rJ9e7Cly+DHxrb5JY8khcICwJbASnHgtbrUCSVtYf17SyB38L1r4oSJu6vmzHcdAqX988\n2OZqGHwIpt+gx1aV63/zKLAi8DBceCrs/E/iOPK/nApbnUqcxnT6xrDVoYh7E1h7Ezj9rcBu0oYx\nE7WNvwdukjr71m/D/R7m9i8H4NRgktPafXDqycAywJtE/lNPJk7ZO1R5YybCqT8B/glcDrvcMnR7\nx0wEtgfOk+f72R302BIttCca4nge2xGiK6cjurLtHAbsgSj1zYL99wNvT51rFnlrREUL0B24VZG4\n62ngrkdS1M5BBkFfArdthiU7FZlhuXaw7bvmc8G9P2P/wPCsXFeBc65X69G7SR4AtyeSwOkBcPdo\nPXeRrGPpLf3v6PZu1WXW9ef/Ti36slnk35RnVLWvAu4cZGZnC/JWtXcuEvXT7ByC3ZCkaRXEBefA\nvbeFhkQtnJsXbdGdPk/BakiUyorIrLqf6P4PAI90ShhjtOPeRZwIKV46bLwq9v8geb37SWK1fZf+\nFnDqAgyjVty/wa0T7J9AwwHNhrKlXwb7kvi7HbijVY6H9HyfOuCNoIwDdN83gn1ZLp+wjW+Ae1u5\nlLnbFdzJGfu3aP3exv7uqeAuQnLVBO2ve00FSXNwju7bQOteLfua0pC7awXgHGAOcB4ybXg+cBLw\nfiSi5UzgqyMo3zBaYTHJijsbAqsD30emhb8ALAN9c4GvUD39+xUgTGd6s7pJXkWmvaPb1yLuwtVp\nfWUZv2rNXGT6/UTd/wmki78zsAKwtJY7HvgLEFjkLKX/g1WN+mYmLp2YdaWNffOA17QdbZzy3jKL\nSNqiuAoyBb3Fe9s3k2RK/6tSbuYzJlHg8T1bDCwn+3ldTypyxaiuwyzy1oiKFqA7cCupRZ7lavgX\nuA+nzvfHLkUiJtJuimuJV7lvdkBzSCK9dlAtwM10+xok1PBZLfdbyIDtq0k97od6zV4t3JMXxCIv\nE25ncGcF2zndW/dnGmZNrKlnZ+kBuUpgka/ZQoVRa/LlQlsscsMoE4uRAbOs9RrfpMcC4mOrAwPI\nOI9arq6CWHg+idU2wJUN1oFsdWKKV67fQAZlz0SiwFbQcl9EegNvSL3sR9JrWLKJ8lUmXgva0MQ1\nHWEh1RZ5sMZmLFtqjc2mZE6XmyJ+Zoep+2YXpKcGiVJeIqmvFPeq1JhFbrQBtwK4V+ocuxrcJ+sc\n8wsbDOi2t9xmqc+1CQux5RDECjLo5yf07KsW5et67AvIgKjfriCx8A4Z9GxWpvlUr0JUAl95o4k/\nI7HO3SngmnDlxuMcX0WSkE0F90WqwxeHiEUvjFLpzlIJY/QKbjlxRUCthewuB/eZWgsrHtQ8OEOB\n3E+SXbAZRVJBVhz6fv1rqtIGhBN6TtS/13X/15FJPi8G1x5L9bTyRkrc13OPynQiNQs2uAnEE5Sq\n2tDmhZrdRHAzG8jdry/XHwdKtZmFtE8C97U6ZaZfDOOQVAFXBs/N6TP/a0mVOJRMd5ZKmC4gKlqA\n7sAtA05jrWssu0uQSTdppTVVFdzeGdd8jtajKA4c4pqojtV5NbI6jp+g4pB8LM8FZf8iUORDyBTX\nMRvct6lZCi4+J73YQwcWoXDbgrt4CLkPofVFQk4At3uDMvtT/7+ELC5RQSZOOSSixhGvytSQqIlz\n8qZUurNUwnQBUdECdAduSarD9bxFuhUyTf/LqfO91XoMuP2Da5qYcp9ZfwWJg56Zoai9RRmR7U+/\nHAmfW4TEf++CZD58OTjHZw1swiKP631KXxLziS3yWK4JSJjm7Vrm6SRpdVuZVdmiZe+2BPePBuX5\n6fMzaXrZPtB7Umcg2FWQkMTgxeA2ReYbTNJjjyNhqi8iC1r367F6PZSoOblypVS6s1TCGL2C66Mq\nkyGQTIW/gNitkB7EcoeLBRhvD8NPG5/zLWRiT9r6q3Nt/NI4EolYWYTkdzkcmczzXxJr+V+BIm9W\npif1/CfItsBnkKQGcFQl7GqWZi37uK2bgbsquDa9Ms8FgTx7UZUNMuua+NrjwO3XQM4BqsdCNkbW\nQJ2KJM5aAO4yJFJoZ5LJZCVZ8xQome4slTBGL+HeABdGdbyA+D/vA7d7tgJ0Pwb302B7uKlRK8jg\n6CzE//pLGk5MicudCu5QcOeporkF6UE8gViJE/TPrzLvmpRpEvIiOwDcK4GSnUQyk3EGYoU6Vfp3\n07QFXNOOaYiPeTBb+cVt3QbcdXWexQSSvCl/13LO1Htayb4mvvYXxD2rTPlSPSy3EdJj872wOxBr\n3L9ELkvqLQ2l0p2lEqYLiIoWoHtwCxFfuV+x/QEkve09SKrXjB+mOxhcRt78TIWuXe2qfYFCdVur\nAvBKdyBVaJRRTwWxDH+FLBzhLdFnSZKAVcBdHCiZZlcymoksRPF8tQJ0nyexwM8Kyr2SOO1vVvsa\n1jkQlJNutz/nCJXpwUTZu35kNu0RSLoCn5v9ecTN87TKuKvKdmSdso+UZ1n3XqR7WJuBuzU470bk\nhecYsh1AyVwrFkdu9BKLqZ6dtzTwPJLUbSPg/IyZkGG8eMi1JImy0P9by1/VPk2eBUjc9vLIjM2D\naGqWYt88JFPovkhW0e21zOWA/yJx5kcDwcBnXF89NDabl5Df+FJUx8jvouetjMSqzwFuBR4H3ovE\nzWe1rw6uouXfD1wvnzPb/XtgHSR2/03A+4ALgHOBVZF7drSe+zbgZCRF9peQWeMfA+qt67mIZB2E\nkCBOHYJ48rHUzuRcHrgMue+DDdpROkyRl5/BogXoIlSR952NTKd/J6IYtwSOAtYJlLC3uNcC3kLV\nauqugkzC+T3wN3AfQhTaocjCKccj8dk6iSh+OYwH1gTuAx6UYxwdWPGDtSK7CrKi/D3AY0jeoq8g\nSmVJROmtJzLGbNO4ZxBPQ39Vy1g6SDNwmLYLJKHdR5CV7QeRtNQvAT8E9zE99ygaTu93FRLlexWS\nugNtd1oJvqjnPAi8G7gG+Jb+7Qt8EgjX7TwfSY8N8DDwFKLMs6gzISgrjUH88gzccPg8Ky8hL6PX\nkUlkWe2Akv0uTZEbvURgkffNQ6y+qYhCeI5kZl+FRKk9hFjQjyDW4SO6/1zgDESh3gmcAByIpG5+\nF3AHcHRKSSzS+t+CKK0hiC3eJ4Btga+pDL7M9wLPAOuT5GeBoXsGHs0/Eis4b6nP1+1pSHd9Vb1X\nP0Vees8iawr4NjeyyMcjL7cDECW4WD9fStULIJZxXyTl7NZIor1riO9j31zkxQXSU/iUth/gUUSZ\nb11HsWbkcGmIT7vt2/C8fj4Cuf9nADNr22F4zEfeGlHRApSfeLDxBXAr6T4fxvYaMivyUN0f+rQr\nSK6VmUg6282oXm1mrPqqf0scCucqyKDetxPfa1z/GGSA8mkkhNBnIfR1RtlyV+3rJ4lQmY9ETixG\nBj+973aSnncTtYsYh+37FUn62zCaR+Om4/oeRSZGzUaiOR5BZpbORvzUTQ7+uqPAHTDEM5qMDD4/\nhwxO708SGtlP4qd+VWXybX4F8aGnJgi5SYh//cdSfyxfvfBHL8cHRI74fL+O6mpICuShZolGQxxv\nB6XSnaUSpguIihag/MQDWM+BW5lk+a839Md5OLibaxUSkEyV93+bUD0Z5efBtg+rOx3c14J6fZjh\nOFWC/w6uCQfboibbci7Jsm9z9PMzgYxjtczxST1V98ErdR0AdIvABf7jUJEDEm7nkNWUpiJJxNJt\nTg8WZt3LQ8H9oEHb+rU952j5z5KE+Z2hn31q30uQweswFHEOVYOxcbTMDCQmfGqwr07YYCz/+iRL\nA04lSWS2Mrg/kDm5qIpoiOPtoFS6s1TCGL2CqyBx1xsilvBkxBp3SObAY6mx0lwFiRS5Sc/zlvc4\nLWMsEslxiv7YJ2sZ54M7KCjD+9cvDZTTWSSr3LcwYBZH3HwdmbJ/nMp2DWKlOiT6Jnx5hL2IsIcw\nRf8WgFslabv7KLGVHr/0FoJ7GLHIw1A9PzHmr+B2qq/EAdyPqArlrDk+JSjPhzxqJIo7Qu/vNXrs\nTpJFkl9FQjrH6rmnk7x0fI/nWiTS5ZKh77mbhPR6/kO8eLO7nCQ3/O/BnVD9fEtBqXRnqYQxegn3\nGMk09wpikb+EWIpTyQ5Dm4i4QvzEGW/tjlVFclCiGGLF8SvEAkyXtT2JJTtA5tT4hvKHdUwkcacs\n1v87kjlxJ469TlvmU1TxzU+d7xcbXp3EZfQK8hJ8TtpeI89vk3tbV/6DqRseWHNunRA/92fdf58q\nZ4es/nNB8Bxerb3WfaZ+mTV1V0jyq2yr5frvzpmIm2VKdftLgYUfdjFR0QKUH28RsyywAzLY9lbA\n+4XfhUR4lpE0AAAgAElEQVREhBEm+yERGasAfir8icgCB4fo/4l6rY/6uBIJzXseWQP0dHB7A6dp\nWfsiA37fJkmR+xpxON+QzzIMlXs7MnC6QI9tAvwYiWB5G3Ctpn6tICtzrQccrtvjVZ4tkcidZYDf\nkAza+bC7r0kb++YiURrvVxm/IIfjUL1tgE2Bn9E4pNJHejQgflYA/9HyQr+3C479WT+/jISQvgR8\nFhmYXSiy+V4SE5EFbW6nubDBp5EB7fO0fX7Fs5eRgVM/OHtIRsgq2O/SLPIWiYoWoPzE7oGbkBwa\n/UjXfCHiolBLq+oab22tFVjk/6hVAG4XcGekrjkEmbnpLcDxuv89yAIR6SnrLfjI43ouQ1w1Dlkw\nYzZJb6E/9T/dM/D7/Urxz4I7OThvU90fhDS6p8hcRT4uczoyntDIR763HGvYNv+sHLKwg99W5e7+\nRJL75Wv6+SYkydUMkjGDZ3X7LpKp9L9CBj2b8ZFXqJ7EdDdJb25bhrbso8btbAtmkXcxg0UL0AXs\nikxyGQucjoTM7Yp88T8M7C//wx923zwkDO8ExHoHOFs+uyOJp8azNPFEk755iKX7JWQyC8jkke/r\n/ucQi/QA/RufWoRicOimuAmIhfgA1RNWjgHWRnoFfnmzXcme7LIucDPwPSS0cUVtJ2q9ess8DNd7\nDXgTtZE03rrvl7aG7QkXYHAVLWOF6v01rEsSStmHPKuJuh8k7NCj2Sx5BbH2Z5JMjFpG9/0cmIvc\nb4c804zwx6r2+Nw6Pwn2r6X/DwF2ZOhl5wbr7B81mEVupPCDYFX7+mV/U9d7K8tbV9uqtbZQy9lb\nLTlvrfpBv34k7NBf9x2qIiNcBZkyPlPP9wORhwTXvKD7p4J7O7hFI7wXoX/bhyG+So31PWQZ00gW\nzXgOGXydoft/qvvfGVzzINJ7SUe++DbPRFL7piZOxeMJFyA9gLubkzXLn+0mkPjIzyCJplGLHALL\nOX1tRWVsYik8V6HauvfP0fvIZxBndOwOH3kRlEqYLiAqWoD2U9O9Tm03XcarJBnsfoREMcxAQgIv\nomaF9fgH7YK/dK6RLyIDpjeShLrdRLJiT5ihcAI1MdtVRE22pYIMpv6RJBa+BYUSK9tpgYK6mCT5\nlM+1Piao73lkNqff/psqRu+muAJJeJX1rBYg+Vv8fW4mM6NDcuCkXUP3BAr1q/r5r+D+R48/SxJX\nHr5wpyIDy19v8v4cQTLXwCF5eRwS3aRx7bFMlsY2g1IJ0wVERQvQGWK/9mZIGNzY1PEGYWDxD9lH\nb2yrCmw+YnVdrn9Z/mSvVPzfuFTZWyM+ah+NMg3J8f2Q7nsppcgXgas3wzBq4X58UMvfk6YiMTLv\nRwXcerVti+PEZ5CEGc4Gt35QxleSel0FCdX7AtU+eO+zf0rPPWhoWWML3yG50CvIC2ayHvc+8guR\n2H+H+Od/p/L6ePqLVelfTTIe0eRyb1Xy+HszX/+nem11iVqrJxdKpTtLJYxRFuJ84o6qGGGoVkyZ\n13oLNIx/9hkIN0EGLLO68RWqrTKnCr+SOm8RsmiEjznelGpLblIin3sVXFYSrlbuRfhiuo8ay3XI\n68Ml5aYh1vYsEov8Uyr784GyvgncRkH9f6N6ks1NVN1Dtz7Jy20B8gJ+UJVvo2cVKvJ/kvSKvGyn\nBvfWr270O71mFrhbdd9ZJNb7rlr2WeB2avFe+7p8qGcLqxJ1nFLpzlIJY5SFOIJgE5IIjbOQqJJm\nuuqh4h+L+IW3I/F5D9SWE880DBV52kfuY5mv1e1bED+uj+2+j2RSS0WV2gojuA++LZNVefk4d+8q\nmTRkEUk53i1yG7jNA2X4jaC9LyLuqLv13vvrDkd6SL7NZwT3cDJJ6oA7tYwZ4H4SyNpImfte0G3J\neXG7fXz3OJKXx3HIJJ1+fa7eLTMbmSXqy/gruM+3eL/9ffCpAVp06XWUUunOUgnTBURFC9B+YrfK\na8H2bJIu+8AQ14cL7Pprx5IsojCHJE9KqPCnqFIKFXk/VVErbqLuv0av/zPiTnk2uOZeEjfDi/UV\nWFNT9L017S3XbVSh+e1mFXmwBJu7HpmxWdH23hbI/iQSwvcKMrjo79l5Wm9FlfZcvTf92t7nta0f\nVYV+OjKh6D4aR614+U6ufbaxa0x1hNtNt08A9wNtv18I4yGV75fBc71YnlcrxPfBu7Catcij1urJ\nhbq608IPjTKwK/BF4nCzvrlIOGEFmYjSKAyMVKrSXZFJLrORsLV9kUlCu6ZCAUFC9P6WKuxFZLIP\nSNa/R/VzP/BlJLPhxiRpZR0yQWgfLbvVLHx12hKn4t0DCcnbTLb7zm6hnLO1zQtJJjU9A1wXnLgC\nMAmZePQT4NNIWN+v9Ph4YE9kQtU1SLjgYiRP+EJgAAkjvByZxLO81N0IV0HCNoMQPzcJCXP8W+oc\ngC2QEMplVN4HkZS7M6VdjEdS866JhEDSxItkQuqlOBaZVHUU8r2wjIdDYBa5kYGrgJsXfJ6qVtca\ntZZ0rnWGYYuO2q6+n87uc4D4RFgPpq7TqfjuKXDvzlHGbWot15bLuBzcVvq5QpKYyvuGp6b2DSAr\nK92aKscPPm6n235B6MVaxmrIoGGD51XTK/KuHB8a6X3k00hWRfpVcI9/o5/nInlwziDphV2P+Oqb\n+L7E9fo2r5OSw3zkQ1AqYYbPcNZ2NOrjVgb3rH72XfN7wH1Q97Xp3sYJnPxfGIFSAXcaSVSD73bv\nibhrfqbHdiBJxfo4uPfkJJtXSANDK6aG5cwCt32wvW/Q3oWI28VnbLxDldkB8jm+ph8JtXSIa+kb\nqjw3RAaD+8EdHyj1RgPT6d+NX62+Esjhxx2cKuhZiC9/GjIv4EEkY6EfXO1H3ESfa/5eVUUs/SlR\n4KX9HZdKd5ZKmOGTaVm0Y7Q7yrm8kuJWAfef1L5/I6vztLPeCslUeJfxXH2q2Mt12w+kbkyyvuQc\nEh/5I9QfLItalCun75e7ANyngnIuI4nSeALxd/tp87/W9vwd3F16jbd4vW/dZwrcVst7kerwzzGt\nyxjL6jMznkLiIz8UmRzlreWvIj78y6iOpDmkerup+nzsf6u9nqiFc/OiLT7yfZEkNXfq55DvIX69\nlUZQftnxU5fPA/dpmloWy2jAUoh/OcSvuNNuHgZe0M9HE097dxVk+v0BgA6W8gXkR7wNsqYkyBTz\ng5HnvzSxj3xEll2YQIsM/34rqI88LvdikhWMVgQOJ7nPGyNjCleQjAPsiqQI8M/nA8BfkOnxOyJ+\n6aP07yXgwGG+cCpal082tqce+CzwJKJnDtD6l1H57idOvMWqDD21Pl3fZ4FT9a+ZZFs9xbqIEl8W\n+QJcCqyhx94HzEKW0MpS5L1mkZ9B+eNPuwD3fnAPpfbdBm6DNtYZWLlVlmAldWwXqsLc4uvVmqsq\n6z5kMk+7emjDwJ1NMsW9gszS9DNa7yVJBObAHa/nrQnu/qAM7//3bo+D1XL/s1r1PtTxYSTGvMW2\nZ/ZATtH6fkYcCglIKoH5SNrgO6idbdqKjzx0pzRItlUKctedOyIpPz0/QN6UIKknx9EzirwmMRDB\ntl8K7HzKHX/aBbgPiFKp2nczuA3bWGc4ccb7or2vO3zeXw0UfLgwxWcSRQ4kPtdTS6TEJ6gi/wpJ\nSOIMksHNu5GQxNt1+xZtx+qilOMyJpFMY38CcXt9T5S9c4gPeyziu16fJISyyR5J2nceK9ZdkayU\nZ+k93VVlvBwZCH9Q65mcejZNRq3U1NmCzB0nd905Bln1eyVkcdrrkNWuPwMcq+f0iiL3P/L+1H+/\n8MAPaK9FHuVcXklxHxLlULXvenCfaHO9Tfii3dfAnRRs+xfAFxJFHg/YhZEfaWUStbctaeIZr3ch\nA7QVVeJ3k0yE8vlovGI/Ttu/B7jHtByvVJ8P2neHluEHg8fr7+FmkolFw/Xpp5/Jb5CejvfBX4b4\nzL+BTNkPI406pYSjDtUT0hbduRuyGvaVwPFImswbEJ8biCJ/e6eEaS+uohbAjUj38i8kS4FdqF+s\nZnM0tEqUc3klxa0nP86qfdeA27TN9TYRfeR2B/eH1PGpJINxYQidQybHZHXTo3a2pJYa998mqnxv\nUhmdKGs3jWT1oV/odbsjk4S8Mu0nWTrvMf0dbEySc8ZPwpoL7n+Hr8Sh9pm43bSeWfqC9IPTs5Co\nm5QrrCNEHaonpC2DnScBH0UmKrwAzEEGGu5AlPh7gVtIVt4ImQ5M0b/9qL4pUfm2+9ZHBrA2gsvf\nDIOfA/4P+Bb88Hr461uRgagDYe2+nOvXffGXOzjuKnDQwTnXV9T2UsigXHh8EezzkfbW3/eKPt/g\neN/6waSWCH65NklubD3OIcDOkpb61JOBQ4HXdfvNSXFrbxLUN5i//A23x8NWV8ElW+v21bDH7+AX\nVyMTrs6FwffAkc8RT6SZvhoc/C3gJmARnHYKbLcz8FPgFmnC4HuQiTsnwB7HaGruLwPfgr1+AYPT\ngaN1gHYY8ve9ooPNE2DMRDjMj789CrtsARf4XPDbwhVLwoQdSFbzWX8E96uV7cE2l+8/TyfRl23B\nK+jVgLtILHFPj7hWQN/2j5JMfnAkCZQicFcG57Wpa9excMeCcB+XHk/VvmAiS5G4/cAdl7HfT98f\nSF60bgH1XSsdJv6O+Jzr+6pFfqb+zQV3lVrk5+k5x+r3+t9I1sd/6H4/+eYUxJ9+n1rkF5DEuY9N\nbY/wuxnLf6Ra3961sheJGyi43z1PW3TnVYgVfjuwecZxP422I8K0j/jLdL1+YV4myckxFUlzekMb\nBYgyZBnoHSUeK8BNwF2j+/xg8sXgti2BbPuD+0VKtoxnMeTziTorPyC+8TdIEmRdiLhGrgT3ZeK4\n9zhB1Ukq+7q67ZX5XSTJxH6KuFI0hw0wrMiRpuSv6EvmWi1/PMmg65f0JXQKnY82iTpYl6dUurNU\nwgxN/KP1M878Ct5+/z7gbmujAFFKnoHeskDiH/xEZKZeGPZ3IeWwaKeQZDcMB7zD3lHKJ56pyKIC\n5J+FhO45xPr2MyUvR9LZXo0M0vqsg743MSbY/ilJNkb/YjuPqkiRcOWgqvpzeH5xGuJxWo8OMsep\nb320yaj1kRdBqYQZmlhhe4tlYaLIAcnRcFd+9VTtSw+6lcQiH0l6gnTYVxzGeQ8yxToYNHbngftM\n/vK3gqsgg9y/CV4wDaaZ11xb5IvIK9dZiDX+GhIu60MFr0PcLtOQNLcOiQKZSbLMnENcKkFUiNsX\n3K871IYK4q4JosLcJ1SuwzLOLWvoYB6USneWSpihiZVn+MV2gSLSWNbc6qlj0ZXJRz4SWWomYvQj\nXfSXAqvL/2D/Qsv5pduB25uu7AXFz2Vs8L2dTxI6u5PuOxOJNQ+/3/cFn1OhtW4PcL/roPzp79lW\nxCkCRhWl0p2lEqY5XIUkob1DkgR5S/294B4PzhuBReAq4E5EZs35L3Ckx0qWpMtV9OW2MdWWahPd\n67idN6i1d0agyGcjXfYKMmtwqLUT20yuvaAoJ6GaJO79TA6+u68jbpU9SQYmb0Emtflz7kJWCPLb\nK6vy/5c+36+D+6PW0U/Ti2QPS/6s7/wBVPWKCyEqoM5S6c5SCdM87rfBF/u14Ae+BtJdzWtwZ2uq\nrb9ohIK3kTiSx68F2cKAl9ssuJ+ngNsysP68xX4OsthBQb2P3HtBUV6SNU/8TNLWdrDItOun2gL/\nOdWTf8ZoGRvr/+/oM0s97461ybuBPtvZequICqizVLqzVMI0h6sg064f0S/Qf4P9f0AmTuQ1Qn8W\nMrBa8qgUV0EWOP60/ph997tfrDW3T3YbYqvdD679E7G8/WQPX4ZPCXtTcfeibL2g4RDf71CRX0PS\n6/E9y8v0WTgkQiR0x4Qv5379HbzWeSUey+qNnS923/MYEaXSnaUSZmhiK2wdJGzLd09DH3kO/tO4\nnogk30VJlXks2xxV4D6+11vmO9e/J7FP3Mcnf1Wtv3BAzbtqXD73drTjKsgApr+fEUmvJ4jAiXtJ\n1+m2t9I3SZW3ffb+jrRjqipwh7h4SvobaQul0p2lEmZo4nUdv46M6Pt43CN1f04TIGJr4+PEcemu\nojM3S0Ys6y364/e5qP0kqfOou/K7m6D3zYfCXUeyvqaPBEr7dduV/qDTRMVUG6/3+XO9n3tQkxzM\nVZAYcodkR9yTZFwobZHPJlkku9NulQqyyLJDehFFKfGogDpLpTtLJczQxLG455DkmliAuAPmkv8E\niHBijE5RrpGnJArN3az3JfS1+sHKhxvfEzdF7+VOGcfSft2CfLG5E3W+yvgZTCJJ8ObHIkLXylRw\nq+qx76oS/1Pq/m9MtlLvtDIfULkO7Gy9VUQF1Fkq3VkqYZojnrLsfwQvqxIfmzovByXrNgc3GJRX\nkpDDLNyd4HYItr0/9qfgntF99aJWrtV7+ffa9tT4dXvFIi+AKovbz4U4Ro2TaVQr8z49fpZ8t91F\nsg16/6+oVdrtjFrJbI//DZxOPIFs1FAq3VkqYZon9gMHFg3kbyG7rcFdGmxXkEVuVy+XEgckjG3L\n1L4JiN97QbAvuEfxD/Eneh/rrLEYlxP4yMvUG+k2XAXpQS0G93tqZ6J6Za6DiECczbEsxJOD+pEo\nsgNH2Uu+RM+iZMI0RzyJ5Wn9oj9JzUBRbnVtL5ZQTIT4kUs46Jde1Bf0XvnVz5eitlfhFcaP9Jzt\n6ljt/ciiBXcGP9aSvchaJiquajcBGdd5PPkuZb5gHTIlvoLEk5fo9xr31KYiCz1/V7cvKOB7EXW4\nPiiZ7iyVMEMTK/EzEPfKj5Bp+hdRlTSo5XLrhbb9FNz5yb4xE5EVWTqdS6IJ3PnIeqXp/d9UhTC2\nvszuUD1nh4xjXqnsgCRt2grzkeeAOxpJNzCQ/Vxii/x7VOUxLxuuAu5WcEcU+JuICqizVM+iVMIM\nTRxlMUvf/juQuFf2H36Xrq7/+yvg/pLadzOSX6JsPvJzwe2YsX/X4B4N1LnWR1BMzDjmrfb1qHJl\njYruc5uIo4x+EmxnKfN7Aou9ZK6VEPfTxt+vnqTus1iik1J0J30zgWeAnaBvLrCcHjgOeStfO8xy\n5yGLExwrlqtPjM/rJKuV60rqLAEsHOFK6u0gXJ095GP6f0viFc1r3CfL6P+M72DfTG3r8rrjfGB3\nhn2vDeQ7cx3wsmxmfZdcBbgMWSDmt8AK1UUUMUaR2XPtBzZA5DygPIbN6KKkb/hmcBWSGYn752Mh\npy1X92Xp0sZESI6L9UYgeJtwp4D7ampfBZk56MB9ksQ1lcoXHac8+FydsitJ195NL19vZFhExVbv\nfgXuO3WOpXuI/cjMXZd9vFNkytWGvOctE3W4PjCLPDfGAyfq50Ujt5DjL98DJJaFX/IsZOmMfQUS\nW0kLiS3r2Fobj1jQACeTLC5yqd4vTwOLHLScX+rn10rYG+lGliLp7aXR3p9fYo0XkcVjUCPjaODK\n1DPsAPFzP0zlmApM1N4x9r0oji62yAGZ3uzA7TXCcsIogTnB9t7EmeXic+8Ht9bI6suTWNaTkFmC\naavpu0FPo44f051MVahbZj1r6jkZy6wZreN+L89ryPP88/xL8AxPKbY31GsLqgwLs8hzZLH+r2fZ\nNIv3f2uZsWUxJqPsRpZUAcSyfhR4N8nCt95aWyo4uZ4fcyiLHOAN/f/ayOQd7cQ9qOB71MjfHT/f\ndXXHqRT6DFwFOADzidfFFHnreOUyQsUaD+gFZfbNA+6m2o0SUTrXCqis1wE/Ilkx3fOW4LyHSbrG\n4Q9wacTCaPQd9C/NXlHkUUH1Xou8bJcDFulzOIyhB49v1f8/QhRp+hl2gFjWQxp8l4ogKrj+KkyR\nA3VGxutZLF65jECx1tT3BslSYSmr6YTJiPUa1FfkDMdwyjebA78HDkFieivahs2C8/3yZ/OBbYJ2\nLg28CmzQxL3uFUVeEFU9qFAxNvJ3bwO8RGwFA8X4ogPfPZhPvDyU0EfeSk4TtxHx7Lc86nMO3G0k\nkR0/BPeL4Jx+ZMHngaFl6wRVUSiHIhE1M1J/twa+1Rkks2CnBduXa7u+0+Ber0IcIWSMHLddc37m\nsuf4GbWUSneWSpiEeMLEXo2/tO4j+mOYlH28pfrO0rKeSqxcdz0y/Tj8Ib2MrMazXed/UJm9lcnI\n9O3Hwd0N7lIkR/stuu/2lCK/E5kePg1ZTWljZGm3p1WhZynxCeDW0jK+rfsK7Il0O7EyHhj6O9QL\nC2r0JKXSnaUSppo4RnygwTkfpmH8c9N1TSCZJaq+SDeJZO1ElWHMRCQlwANUJeuKy2nzDyzTOrsA\n3GkqzwNIrnaH9CYWUh2xcgoSv+xnC/5XP38muSarPa6CrDTkkCn/vWAVRsVUaxZ2G4gKqLNUurNU\nwiS4CrgHVWk0ssh9FsRPjbC+fiTs0IH7j27PQBav8BZ5P5zyV3BvIJMzPkshkyFcBXGDfJhkVfZn\n5QXk5iK5YFygxF8PFPkZ2r4zEYt8MbgNtB3nIasu1WlPnMr2e/SG4omKqdYs7DYQFVBnqXRnqYQR\nYgVyBbhtshVkbCWuq8pl++H/GKr83z6OfI4q8t8i7pW9dJ9fO/FBVYCTEbfGx5tTbnn9iN2LJDlP\npiJrmHolfi/JykkOWbnFK/K7keyNXpE7Ep/5HGSBiXDNz/CevzUoZ6A1eQ2j5yiV7iyVMEKspK8D\np6PhaWUXK18/2PmZ4VuJoXKNFdVeiGvlKCQCxCE+9KPUwn2EeFJGvP7iQBN15dCtdhWVYSxJPuiT\n9cXn5VxMsoLSI4ibxacy2APxm78D3CLi8QV3EskycRntce8hca30gkVuGCOhVLqzVMIIsSK/A9z6\nui/DanUVZGUSh6wbWAmu17C6KoXp99Wxfl0Fyap4YaKo3PFIrpIBsVzPmIX4lV8BN0bPeUCV4wXE\nq6FXlZmq01XAnY0M1A5HiU9FBlxXCLb/por8FKQnsQhxtzh5GbrZwf+9VNm/WdoSl328KvqMQThX\nQWYihr2fblfmUdECGLkRFVBnqXRnqYQRYiXxILgPNFYabrwqlx1T14ehdelQu6xyfB1fJl7uzE1D\nIjwOTM45y7spnge3hl4zC9ynSNwTM0iiXjISVAESWTIMF0X8klsATrMRun7E731M8OJ4XZW5I7Ha\n/UIA/0QGcSvggthldwKyCHNGb8FNALeylrdFcLyb/bpR0QIYuREVUGdbpujvC8wG7tTPIIl17gLu\nAP4CvHUE5XeQeJLBu4C3UXfChJsEfF03dkqUJ+OBS5G0n+8BbiRpezpZlGc/4ChgHrC0nnMtksb2\npeS0Lz0E7Aa8GdgUuBJ4E5JIai6wA/B+4Hrg13rRAdV1ugoysWMvORb2HMJzspRkPAN1CWBrvW5d\n5BkP6knrAAuAJXX7K0gq2zerjEcj9/YdQF/ycuDdwIWaqMnfR53s0TcTeEHL0wlBffN0f7cyWLQA\nRm4MFi1AHqyLKPFlkR/vpcAawNYkL4cj9S9NCS1yT9yVH8g4Flq7DtzEaus3ntyTDr2rF/3irc/P\nqbXst08B943aXoFboBZsPzLAuENQzrnUHRSMyzlbrf8Mq70Zt4VbiPi4vcV8KRJFE05ackh0TaoO\ntw3ihpmulryv73hkQlCd+uPFgD86xIMzjNFA7rpzR5J0rgA/IJnG6/kccFonhMkHN0kVz0CgrAIr\ntWo1cqfKdhqxP7pq1ffnET92nckuVXXehKwA5Os8Qz9P0WsjPXeRKtIJyMSbvyKLMs/Sa55BBkG9\nayct98ngdtV93h1ymR5vJvrlDcSdM5lksPUvuj0Z3Hzd95jKcITK8Qdt4+OIW+qpoO1zkIiXjPsd\n15sRO9+1REULYORGVECduevOMcA9SK7p5ZFufTrV6PlA1jT2EiryGguyga8ZwO1E9WIQYUy4/7tX\nFWydMuJ6L0uUlauAu0+tV39NBG4JPadPr7sDWRLOgTtH675M5ZpB5lqi7gRwu6f2NRn9ElvG/r7c\nTbJIr6/PK3LfE+lXBb2l7rsdmUT0QND2p5P661rlDtw6jeXrGqKiBTByIyqgztx95HcDPwcuAS4C\nbiPJCgjJkmVn1F5aSsYjPYoDkLbUWwwBsSTZkuqUmh8DLg5OugZ5uV0iZTRM8PNm/X8bkoBqCeCc\n4JpB4uyHff5BLgdMAp5H/PI7Ib751ZD7fjRJClLP6ySpY1G510aWUEulBq2JPV8C+RKNBw7VukDG\nEkD89H5ZtlOBd+rnm5GxErSuB0WO2Or2GSR/oTIH4xJVMixMZO7qwc7BogUwcmOwaAHaweHAt/Tz\nZGTQbtk65zpgOjBF//aj+u0WFbt92StwRWilBsddBU67QP685R5v94ObK9cedXRiYY6ZmF2fP37g\nQVqf/v3tNjj3xmqLfPXtwelai2MmiozuC2L1j5mosz91odytd6pT3zHgviefx0xU6/cSqT/erqSO\n6/b6n0HixHWm6WGHJ/KeeTFs+aVke+uddHuO9EiucNq+F8E9BJfO1+PTwP0nOH5KUl94f65wsO1O\nDHk/bdu2e247QnTldERXtsWb4a2u1ZBIlRWB7YA5SHRCPUroWvG4CpLMaXydbn7oJ/exz95PfgQy\nI9Mh4YSTkAk0U1Llp33XGwcuiRuQmPGv64vhdFWqKyGDiBMQf/QLSGz1v7SMycjq58dlyw3gDgf3\n/aDuSeAGwW0VyBbEn7tJoojdNYgv/jXdN1nbfApJDPkvVf4FSf1uMtXJs+aDu1g//0Ov8/ljvpjc\nx5rn4UhSA3RzDDlU/2CN7iYqoM626M6rEKV9O5KXGuA+YC7iJrgNOL5TwoyceLDz36qAK9nKJT5/\ngGr/7jRwV+q+LanyVbu+QPmHLowKEk3ikMFEhwwKDhJPzz/lr0gWwKe0rIcR63YHJD7bD3ZOR5JT\n1ZHbTcl4qaSjX9ITcnxirANUSfvY+BmqqP2AqfeZPxvUPzm4H/7vtuDzOSR+9R9m3x8gSYkwMJyn\nWqIOZZEAABS0SURBVDKiogUwciMqoM66unOpegea4JMZ+0q0ruSwmY/EgD9a/xRXoWrpKa7U/5OQ\n+9JH4qs+HNgQ8ZWnY9PHIy/EL+r5bwJWRXzZB0DfbCTS5DhkDOJA4FPIy3N1YBXgJCQ+/GTgQw3a\n9TriT1f65slLg98hk3SuyZBvgd6Pb6tMfkWZzUnGFZZH4sY/CLwSXDuO6gUhXkV6am/oeRsCzyGr\nCT2s8vgFAzRW3FWAPUjGI4ZaDKHsDBYtgJEbg0ULUDQltchBrcK5ak3Wc1FkWa7enRD4it2uuu+L\nKcs9HV73IT3+NLhj9fNVVIXjVVn/E8AdSOKK8dkIb1MLvV6yr/2RePOw3FtIZmMOZLfR3UHSY/ir\nWtKpSJzYBXIfSVz5VHD/G9yP1/TeOsTf/kOS3Cxfpda10+A+G8aopFS6s1TC1JLOB15zvEE2Qfdl\nklBC74a4FPEN15s676+5D8lnMhvcQ+D2FMW15ZeozkUylupQx/Fa7mC23LECPAiZ8BSGWd5F4tIJ\nlWY4FvAESb7xOpOOoPpYfP0hKUXuJw0t0P8+N/l3a+9PT6ZejYoWwMiNqIA6S6U7SyVMNa6iSvL/\nWrf+XAXJMeKQiTs+tvwuJMHULKrj1L3l+fZAqR0K7kkk299z4DZWH7lXbv2q6MMB0vmIlTwTGWzN\n8jNXVNGfrjKcqS+bV0lSz9azgK8Et1uggF+vfSHFFvkNqTI+mXoBvApuU70v55D0Bv5ZW2ZPEhUt\ngJEbUQF1lkp3lkqYhFhx/RpxXbTYlXcTwO0cWLeTVPH6AcPxJO6DUNmtqMevRaarnxqcf3pKYU4g\nSSUbKshHwe2IRJjUGzTcn8Ri9tc9RpyxML4H6aiai0kGLecgvYb05Kmpenxmdf3uY0FdbyDT/H2a\ngWnIIG0DK98wjIDcJwT1EHEXfj8kidUzwMrIoNtRur+JMriWZILLlcig5KHAesAmwN+RgbvNiAcV\nXQWZXATJwN98ZHBvF2CvjMG9tZEJQy8hA5TzkYk240TurFXGXQXYCrhQj6HtWhmZbOTPGQ/o+pqg\nZb0FuF+vWRIZwDyAZKKTv28Ar+g1/r69Hsi9ABlc/z7wot6vlYA/Af8QuXreIjeMnqFkFnlsQfoB\nuilIfHY/TVvkcRm7q3XZj/i8vb/cx6erpV11jXetnIO4JlKujTETU/V4S3YRMmA4V7cfBDe7gWyT\nwF1CkvTrciQnzGLdnkbif58RyHFmYM0/TJwrpaZ8h+RzCS1yP5Drgvb7NgQpfuN9ve5eiYoWwMiN\nqIA6S6U7SyWMECufcYib4u/NK/GqMi4PlKLPoXK1Kq15yMDmiyTLmmk6WedUyR5JtXujAgcdnKpn\nEuJvX4TEnJ+r9f1AFG2NXN5FEomij+ubhgxAPqbb/xYlHSpxQOLTf0QSWfNEqs0TgjJPrr5vbi2q\nXUDe7TQZmUCV9rM3WISjJ4iKFsDIjaiAOkulO0slTELsO96FYfts3QdJkkZVAuV1N7JgxAYkCxN7\nS91bs8cjMySbyUT4fr1mt0RWtw64uxpcsyG4f+pnhwx+LqBW0aba7X6vLxgfeaLx9TWDozvWXu9W\nyyg/Y21OwzCaoFS6s1TCCFUWeZ2FgJsuY1e1mP2iyVeqlXuvWs2vIy6RWSRuBYeEKT7QhBKvJ+sG\n4O7PON9bzOsga2n6+vySdeHfYmot8uOQAWCnsr9I9rJsYYikX+Lugxl1PKz3ppctb8NoB6XSnaUS\nJlBC/XX+t+Ij94ptLBI+6IKyXkbcJ08gPu1wWTifTvb0jMKjJmU9RRR1XdnGqSL3PvKbMpTsPGp9\n5EcF1zgkxj2wvDPDFr0P/LTgukf0/7b6Aupv8gH1ElHRAhi5ERVQZ6l0Z6mECSzWCSllFOxvtoyq\nbW+R/4RkPdBjkeRWGyKDiPMQn/xdSAz5ndTEmVcp8kayri0vj0z5KuD+iAxueqU8nWQykP97Vl8K\nRxIvbOF+Ji+YeBbmS1QvvlFv4s4k4oyMbiHJYOdsRq9FHhUtgJEbUQF1lkp3lkqY9uLGkfiFr0cG\nQO8Atxm4fQMFeha4b6tVPczoDbeLKOKqfeHAqX+xDAT1vpxS5A8G101C4tWPQqbm+wRX9wYvlCF6\nLFV1bRfcC/ORG0brlEp3lkqY9lHjyz4fWfnHBQrxcSTscAYy+OgjUOpkXGxYX79azWm/tbfwT0Bm\nj3qL/GySKfOh/zq8rh9ZY/Oa4NxnqOkN1G3/NCSSx69i5JV4/yi1yA1jJJRKd5ZKmPZQ4zfuV9fC\nsVQr8rEk6XP/lFjMVURN1rmjWti/I3F99JPMJN1FFb1X5GeSLLXm//5Vay27I6iOA78taONQStyP\nAYRx4y2MPfQcUdECGLkRFVBnqXRnqYRpD5l+4+kk/mJHVRZB149EseyaoeSiJut8F8nkntCF4WPV\nV0J84gN6/MZAOdcJP3QVqnsR/roh3CrxwhXhWEMQJ97s2EPPERUtgJEbUQF1lkp3lkqYzhBbqOeq\n1fwsSXSIt1gnBee2Gvo4IVDUDklPOwfc5OAcv4CyjyR5FBmADZX01VS7Y6YimQnDc+4YxRa1YRRJ\nqXRnqYRpP7FCnKwKeyJJGN40ZBJQVjbBFizW+EURKtwzM8pdhPjK1UXi7kpdc34gr0/6dTG1Vvu4\n3G6PYRjNUirdWSph2k9VyKD3D49HBhbHI5EhjazbqMl6jqDateJzp0wJznmVZLm155FB2LRFHoQ/\nuing9kmdcysSg24WeetERQtg5EZUQJ2l0p2lEqZz1AyABqGJDYmaLL8fWZTZK9x+qibeuAoyM/O4\nwLXyVEpJ/4naQdqHUuc8wegesBwJUdECGLkRFVBnqXRnqYTpHDWTeHxo4lAWebPlhxNwHDIBqD/o\nEUxBptefo8dfIFk02f+dqtdciCyGMQ3cTqlz/h20YTQOWBpGUZRKd5ZKmM6TOaV9hNZtVey3V7h/\npnrQsoIMsnqLfJG6UlzqGv+C8QOj26QU/g353AfDMFqkru60hSU6z3iqVqvPWgiiiqiJMvdDFnPY\nBlnMYRGwMXAMcDSy+ATIwhADwee3p8rZAFk44tvA00AfsA/wHuAqPadP/plFPgyiogUwciMqWoAQ\nU+Qdp29m7ao/ffNk/7D5FfADYAKyCs984HZgN+BtwO8Rhb40iSIHWW0oZGkS5f40cJqeswLwH93f\nr373w5BVfgzDGIWMctdKu3CTwJ1IEkv+gPrD5yGx4DNSbhQ/Jd9/HkQWfu5Xa/tRcL9BQhT3Iglv\nvCM/v75hGC1QKt1ZKmF6C7dXSlGPQ3KqOJIFlMO/mUg4oUOSeF2cKGl3UVIGpPzvA4U20zBGJ6XS\nnaUSpguImjvNVZA85z651Xk6uLkYCUMczFDkryOpAXx8+FyS/CwPI6l1w5meDskRY6GHwyMqWgAj\nN6IC6rTBzt7GTUJ84NOB/+rOtYHlkWd8EzA348L7gTV9IchA5ubA1sC5yMr3hwDHAWfpeU/qvsNM\nmRtGOTBFXn4GWzj3Y8B9yMDkmkgEyq3ADnXOvx3YWz9P02vH6PY8ZKAU4F0kinxxE5E2RjaDRQtg\n5MZg0QLkxb7AbOBO/QywEnApcC9wCZBlsZlrpS24CpIr5RokYda5SP7xC5AZnGcELpWN9P91JOt+\nngfuiqCsf6h/PYx5d+AuK66NhjGqyV13roso8WWReORLgTWQWOYD9ZyDgCM7IUyPEzV/qvuaKtu9\ngsgTP6gZJshaPfisVrX7NLjHAqW9e+3ApnPgLsmrYaOQqGgBjNyICqgzdx/5GOBG4FVgMXAl8AXg\n08AMPWcG8Nlhlm+0jKsAnwPWA9ZB7v1KiH97PeA3wckX6v/vy5/r12seBvbT7e2QZ3wA1Sv6vNHm\nhhiG0SHGAPcgimJ54Drg18ALwTl9qW2PWeS5k7ki0RxkRaD9wP0diQO/nyTG3IHbgiS51o7IlH2/\nvR2yYlCQfMs5cBc2lsUwjDaRu0V+N/BzxA9+ETJotjijUlPanSE17Z91kQHOPsSyXgF4MzJz80Bk\nGj/IS/hAYCIy43NJvXYisDPwDj1+DDKQCvFztin6hlEWRhK1chLwUWAzxPK+F3gKeLceXwWZ5p3F\ndGCK/u1Htb8psu2q7SbuT98rgRLXbR4FloZ9ZsHgFkgelU9C382w1RTgceB82OZq6FsduAZYUsta\nHTgcWEWOr/0s8pyBc98GYyaSTNFvd/t7aTsa4rhtd892NMTxPLYjRFdOR3RlW3in/l8NuAt4KzLY\neZDuPxgb7MyDaHiXueV0ctBUZNHnGVRnXJwB7lca1dIPbkNwN+vxft0/kDEh6BybEDRsoqIFMHIj\nKqDOtujOq4A5iFtlc923EnAZFn5YAtyAKvJ0utzUohCxD3wCMrsza0EKr8w3r41kMQyjQ5RKd5ZK\nmN4jXkjiq+A0Y2HVavZTaq1p1w/uKnD/Tiz0quMVZNr+1Gor3TCMDlIq3VkqYbqAqLXTYwt6fXAP\n1ka01L1u7frWdjsWwxiVREULYORGVECdpdKdpRKmC4hav8RVwJ1J0wmuYsU8kH1+uExd1TUWtdIa\nUdECGLkRFVBnqXRnqYTpXdwazfmzzdo2jC6hVLqzVML0JkNZ2FXnmrVtGN1BqXRnqYTpAqLWTjcL\nu8RERQtg5EZUQJ2l0p2lEqYLiFo73SzsEhMVLYCRG1EBdZZKd5ZKGMMwjC7BVggyDMPoVUyRl5+o\naAGM3IiKFsDIjahoAUJMkRuGYRgtYz5ywzCM1jEfuWEYRq9iirz8REULYORGVLQARm5ERQsQYorc\nMAzDaBnzkRuGYbSO+cgNwzB6FVPk5ScqWgAjN6KiBTByIypagBBT5IZhGEbLmI/cMAyjdcxHbhiG\n0auYIi8/UdECGLkRFS2AkRtR0QKEmCI3DMMwWsZ85IZhGK1jPnLDMIxexRR5+YmKFsDIjahoAYzc\niIoWIMQUuWEYhtEy5iM3DMNoHfORG4Zh9CojUeTfB+YAs4EzgDcBGwE3AbcBNwMbjlRAo1y+OGNE\nREULYORGVLQAeTAAPIgob4A/Af8LXAFsq/u21+005lppjf2KFsDIDXuWvUMRz7Ku7lxqmAXOBxYC\nywOL9f8TwJPAW/WcCvD4MMs3EipFC2Dkhj3L3qFnnuU3gZeAp4FTdV8/8CjwCPAY8L6M64ayyKMm\n68/zvDLXOSWnOputr4jzur3OZsua0uE6mzkn7/O6vc5my5pSQJ25D3augXQtBoBVgRWALwN/BPYB\nVgO+A5w0jLKjAs4rc50DOdXZbH1FnNftdTZb1kCH62zmnLzP6/Y6my1roIA669I3zOu+BGwNfF23\n/wf4BPAVYMWg7HkkrhbP/ciLwDAMw2ieJ4D35FngesCdwHKIwp4O7A3cAmym52yJRK4YhmEYJeVA\nkvDDGcDSwEeBG4HbgeuBDxcmnWEYhmEYhmEY+fLyEMcHgY90QI52MVT7eolef5Ywep6nPcsS0E1T\n9IcKW3RNnFNmuln2Vun1ZwndL3+z2LMsAd2kyEEGUs8Ptn+LzCjtFd4MXIYMGv8L+LTuHwDuAv6A\nDDJfDCxbgHx50uvPEkbP87RnWfCz7DZFnqYX3vYhC4DPIV3RLYBjgmNrIj+QdZGwzi90XLr20mvP\nEkbv87Rn2WGGO0XfaA9LAEcAmwJvIJOt3qnHHkIsARCrYKDTwhktY8+zdyj1s+w2Rb6I6l7EckUJ\n0ia+DLwD2ADJYfMQSTftteC8xXR/23v9WcLoeZ72LBMKeZbd5lqZC6wDLIMkrdmiWHFy561I7prF\nwOZI7ppepdefJYye52nPsmC6xSJfCnnrPQacjQwqPATcWqRQOeLbdzoyaPQv4J/IIIon7XPsVh9k\nrz9LGD3P056l0AvPsiOsB9xQtBBtpNfbFzIa2joa2gijo52joY0d4VtIKoCtihakTfR6+0JGQ1tH\nQxthdLRzNLTRMAzDMAzDMAyjC3kfspbpHGRwaB/dvxJwKXAvcAnJUlIr6fkvAb9JlTULyTQ5B1nU\nY+l2Cm7UkOez9JyHZBQ1Okuez3IQuBtZhP42JGzR6DHeDayvn1cA7gHWBo5CUgMDHAQcqZ+XB8YD\nu1P7hVkh+HwOsrCH0TnyfJYAn0eiI/6VccxoL3k+yyuQeHNjFPE3ZDDlbuBduu/duh0ymfpW3NKI\nJbddG+Qzmmckz3IF4GpEeZhFXjwjeZZX0OGMj902IajXGEAW37gR+bI8pfufIvnyeOrFpl6s5y9A\nXC1GMQwwsmf5M+AXwH/bJJ/RPAOM/Hc5A3Gr/KAN8tVgirw4VgDOBfZF/GwhrSQd2hZYBXgTvZdx\nrlsY6bNcH3g/8HeGv46ukQ95/C6/jCTQ2lT//idPAbMwRV4MSyNfllORLhzI2/7d+nkVZDpws7ym\n5W2Yl4BG0+TxLD+OLJP4EOJe+QDwj9wlNYYir9/lE/r/ZeAMYKMcZczEFHnn6UMiTP4N/CrYfx6J\nRf2/JF+k8LqQNyNfLJBpxBORrpzROfJ6lr9HVkdfHdgEiZDoxXwlZSavZ7kkSZTK0sCnsDGPnmQT\nJA3m7SThSdsh4UyXURvmBPAw8BzS1XsUGIOk0LwJuAOJcjga65Z3mpE+y0eQZxkygEWtFEFev8vl\nkVwsdyBhjMdiv0vDMAzDMAzDMAzDMAzDMAzDMAzDMAzDMAzDMAzDMAzDKILFSFzwnUic8HcZOra3\nH9i5zXIZhmEYTRLmzFgZyS89ZYhrImSxXcMwDKMEpJMfrQ48q58HgKuAW/TvE7r/BmAeYsnvi6Sz\nOJpkNu032yqxYRiGUUVakQO8gFjnyyGZIwHWAm7Wz5tRbZF/EzhEP79JzxvIW1DDGA5LFS2AYRTM\nMsBvgfUQX/pauj/tQ98GGAvsqNsrAmsi+TYMo1BMkRujkfcjSvsZxFf+HyRn9JLAqw2u2xvxrxtG\nqbA0tsZoY2UkbaxfnmtF4En9/FVEmYO4Y94SXHcxsCeJ8fMBJNOdYRiG0QEWUT/8cE1k8PJ2ZGHd\n+bp/KeBy3b+vnn8YkmJ2th5bsTPiG4ZhGIZhGIZhGIZhGIZhGIZhGIZhGIZhGIZhGIZhGIZhGIZh\nGIZhGD3D/wPgTbK5MtCyEgAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "%matplotlib inline\n",
+ "data['Weight'].plot(marker = 'x',title='reported Weight')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Next, we would like to perform interpolation for missing values in the *Weight* column. To do so we first select the column we would like to make the interpolation for and then apply the $\\texttt{interpolate}$ function on the Series we selected."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 78,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " ID | \n",
+ " FoodWeight | \n",
+ " Weight | \n",
+ " Calories | \n",
+ " Proteins | \n",
+ " Lipids | \n",
+ " Carbohydrates | \n",
+ " Remarks | \n",
+ " WeightInter | \n",
+ "
\n",
+ " \n",
+ " | Date | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 2013-06-11 | \n",
+ " 401 | \n",
+ " 30.92 | \n",
+ " 91.3 | \n",
+ " 2107 | \n",
+ " 156 | \n",
+ " 43 | \n",
+ " 270 | \n",
+ " NaN | \n",
+ " 91.30 | \n",
+ "
\n",
+ " \n",
+ " | 2013-06-12 | \n",
+ " 402 | \n",
+ " 30.31 | \n",
+ " 91.4 | \n",
+ " 2057 | \n",
+ " 125 | \n",
+ " 40 | \n",
+ " 293 | \n",
+ " NaN | \n",
+ " 91.40 | \n",
+ "
\n",
+ " \n",
+ " | 2013-06-13 | \n",
+ " 403 | \n",
+ " 34.11 | \n",
+ " 91.2 | \n",
+ " 2151 | \n",
+ " 119 | \n",
+ " 33 | \n",
+ " 341 | \n",
+ " NaN | \n",
+ " 91.20 | \n",
+ "
\n",
+ " \n",
+ " | 2013-06-14 | \n",
+ " 404 | \n",
+ " NaN | \n",
+ " 91.7 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " VisitTo | \n",
+ " 91.70 | \n",
+ "
\n",
+ " \n",
+ " | 2013-06-15 | \n",
+ " 405 | \n",
+ " 28.95 | \n",
+ " NaN | \n",
+ " 2418 | \n",
+ " 160 | \n",
+ " 47 | \n",
+ " 311 | \n",
+ " NaN | \n",
+ " 91.75 | \n",
+ "
\n",
+ " \n",
+ " | 2013-06-16 | \n",
+ " 406 | \n",
+ " NaN | \n",
+ " 91.8 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " VisitTo | \n",
+ " 91.80 | \n",
+ "
\n",
+ " \n",
+ " | 2013-06-17 | \n",
+ " 407 | \n",
+ " 31.00 | \n",
+ " 92.6 | \n",
+ " 2211 | \n",
+ " 171 | \n",
+ " 49 | \n",
+ " 264 | \n",
+ " NaN | \n",
+ " 92.60 | \n",
+ "
\n",
+ " \n",
+ " | 2013-06-18 | \n",
+ " 408 | \n",
+ " 36.42 | \n",
+ " NaN | \n",
+ " 2274 | \n",
+ " 167 | \n",
+ " 23 | \n",
+ " 342 | \n",
+ " NaN | \n",
+ " 92.25 | \n",
+ "
\n",
+ " \n",
+ " | 2013-06-19 | \n",
+ " 409 | \n",
+ " 38.14 | \n",
+ " 91.9 | \n",
+ " 2274 | \n",
+ " 137 | \n",
+ " 33 | \n",
+ " 346 | \n",
+ " NaN | \n",
+ " 91.90 | \n",
+ "
\n",
+ " \n",
+ " | 2013-06-20 | \n",
+ " 410 | \n",
+ " NaN | \n",
+ " 91.7 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " VisitTo | \n",
+ " 91.70 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " ID FoodWeight Weight Calories Proteins Lipids \\\n",
+ "Date \n",
+ "2013-06-11 401 30.92 91.3 2107 156 43 \n",
+ "2013-06-12 402 30.31 91.4 2057 125 40 \n",
+ "2013-06-13 403 34.11 91.2 2151 119 33 \n",
+ "2013-06-14 404 NaN 91.7 NaN NaN NaN \n",
+ "2013-06-15 405 28.95 NaN 2418 160 47 \n",
+ "2013-06-16 406 NaN 91.8 NaN NaN NaN \n",
+ "2013-06-17 407 31.00 92.6 2211 171 49 \n",
+ "2013-06-18 408 36.42 NaN 2274 167 23 \n",
+ "2013-06-19 409 38.14 91.9 2274 137 33 \n",
+ "2013-06-20 410 NaN 91.7 NaN NaN NaN \n",
+ "\n",
+ " Carbohydrates Remarks WeightInter \n",
+ "Date \n",
+ "2013-06-11 270 NaN 91.30 \n",
+ "2013-06-12 293 NaN 91.40 \n",
+ "2013-06-13 341 NaN 91.20 \n",
+ "2013-06-14 NaN VisitTo 91.70 \n",
+ "2013-06-15 311 NaN 91.75 \n",
+ "2013-06-16 NaN VisitTo 91.80 \n",
+ "2013-06-17 264 NaN 92.60 \n",
+ "2013-06-18 342 NaN 92.25 \n",
+ "2013-06-19 346 NaN 91.90 \n",
+ "2013-06-20 NaN VisitTo 91.70 "
+ ]
+ },
+ "execution_count": 78,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "data['WeightInter'] = data['Weight'].interpolate()\n",
+ "data[400:410]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Comparing the values in *Weight* and *WeightInter* we can see pandas used a linear interpolation to fill in null values in our dataset. We can now store the results and make a submission on Kaggle.\n",
+ "\n",
+ "# Kaggle submission\n",
+ "\n",
+ "In order to make a submission we should make predictions for specific dates, indexed by ID. The first step is to load the indices from *test.csv* file."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 80,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " ID | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " 183 | \n",
+ "
\n",
+ " \n",
+ " | 1 | \n",
+ " 184 | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " 185 | \n",
+ "
\n",
+ " \n",
+ " | 3 | \n",
+ " 186 | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " 187 | \n",
+ "
\n",
+ " \n",
+ " | 5 | \n",
+ " 192 | \n",
+ "
\n",
+ " \n",
+ " | 6 | \n",
+ " 197 | \n",
+ "
\n",
+ " \n",
+ " | 7 | \n",
+ " 203 | \n",
+ "
\n",
+ " \n",
+ " | 8 | \n",
+ " 209 | \n",
+ "
\n",
+ " \n",
+ " | 9 | \n",
+ " 210 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " ID\n",
+ "0 183\n",
+ "1 184\n",
+ "2 185\n",
+ "3 186\n",
+ "4 187\n",
+ "5 192\n",
+ "6 197\n",
+ "7 203\n",
+ "8 209\n",
+ "9 210"
+ ]
+ },
+ "execution_count": 80,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "test = pd.read_csv(\"./datasets/kag_test.csv\")\n",
+ "test[:10]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Note that we did not use *ID* as the index therefore pandas created an index for us. Now we use the $\\texttt{join}$ operation to join these indices to our original dataset. In order to join two so-called frames we need to set the Index column of the our training set to *ID*. This will allow us to join two frames on this column."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 81,
+ "metadata": {
+ "collapsed": false,
+ "scrolled": true
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " ID | \n",
+ " FoodWeight | \n",
+ " Weight | \n",
+ " Calories | \n",
+ " Proteins | \n",
+ " Lipids | \n",
+ " Carbohydrates | \n",
+ " Remarks | \n",
+ " WeightInter | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " 183 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " 2201 | \n",
+ " 93 | \n",
+ " 47 | \n",
+ " 327 | \n",
+ " NaN | \n",
+ " 92.083333 | \n",
+ "
\n",
+ " \n",
+ " | 1 | \n",
+ " 184 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " 2387 | \n",
+ " 159 | \n",
+ " 59 | \n",
+ " 300 | \n",
+ " NaN | \n",
+ " 91.966667 | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " 185 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " 2106 | \n",
+ " 87 | \n",
+ " 30 | \n",
+ " 370 | \n",
+ " NaN | \n",
+ " 91.850000 | \n",
+ "
\n",
+ " \n",
+ " | 3 | \n",
+ " 186 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " 1914 | \n",
+ " 78 | \n",
+ " 30 | \n",
+ " 328 | \n",
+ " NaN | \n",
+ " 91.733333 | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " 187 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " 2311 | \n",
+ " 106 | \n",
+ " 38 | \n",
+ " 374 | \n",
+ " NaN | \n",
+ " 91.616667 | \n",
+ "
\n",
+ " \n",
+ " | 5 | \n",
+ " 192 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " Lazy | \n",
+ " 91.533333 | \n",
+ "
\n",
+ " \n",
+ " | 6 | \n",
+ " 197 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " 2359 | \n",
+ " 148 | \n",
+ " 33 | \n",
+ " 311 | \n",
+ " NaN | \n",
+ " 91.575000 | \n",
+ "
\n",
+ " \n",
+ " | 7 | \n",
+ " 203 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " 2488 | \n",
+ " 97 | \n",
+ " 115 | \n",
+ " 262 | \n",
+ " NaN | \n",
+ " 91.320000 | \n",
+ "
\n",
+ " \n",
+ " | 8 | \n",
+ " 209 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " 2826 | \n",
+ " 129 | \n",
+ " 90 | \n",
+ " 367 | \n",
+ " NaN | \n",
+ " 90.850000 | \n",
+ "
\n",
+ " \n",
+ " | 9 | \n",
+ " 210 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " 2197 | \n",
+ " 137 | \n",
+ " 51 | \n",
+ " 295 | \n",
+ " NaN | \n",
+ " 90.825000 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " ID FoodWeight Weight Calories Proteins Lipids Carbohydrates Remarks \\\n",
+ "0 183 NaN NaN 2201 93 47 327 NaN \n",
+ "1 184 NaN NaN 2387 159 59 300 NaN \n",
+ "2 185 NaN NaN 2106 87 30 370 NaN \n",
+ "3 186 NaN NaN 1914 78 30 328 NaN \n",
+ "4 187 NaN NaN 2311 106 38 374 NaN \n",
+ "5 192 NaN NaN NaN NaN NaN NaN Lazy \n",
+ "6 197 NaN NaN 2359 148 33 311 NaN \n",
+ "7 203 NaN NaN 2488 97 115 262 NaN \n",
+ "8 209 NaN NaN 2826 129 90 367 NaN \n",
+ "9 210 NaN NaN 2197 137 51 295 NaN \n",
+ "\n",
+ " WeightInter \n",
+ "0 92.083333 \n",
+ "1 91.966667 \n",
+ "2 91.850000 \n",
+ "3 91.733333 \n",
+ "4 91.616667 \n",
+ "5 91.533333 \n",
+ "6 91.575000 \n",
+ "7 91.320000 \n",
+ "8 90.850000 \n",
+ "9 90.825000 "
+ ]
+ },
+ "execution_count": 81,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "data = data.set_index('ID')\n",
+ "predictions = test.join(data,on='ID')\n",
+ "predictions[:10]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "We can now observe that *WeightInter* contains predictions for all IDs. The only thing left now is to save the results and make a submission."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 82,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [],
+ "source": [
+ "predictions[['ID','WeightInter']].to_csv('sampleSubmission.csv',\n",
+ " header = ['ID','Weight'],\n",
+ " index_label=False,index=False)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "The first 5 lines of the file will look like this:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 75,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "ID,Weight\r\n",
+ "183,92.08333333333334\r\n",
+ "184,91.96666666666667\r\n",
+ "185,91.85\r\n",
+ "186,91.73333333333333\r\n"
+ ]
+ }
+ ],
+ "source": [
+ "!head -5 myFirstSubmission"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Remarks\n",
+ "\n",
+ "This was the first step to build a model for predicting the weight. What else can be done?\n",
+ "\n",
+ "In order to predict time series values, one often computes a trendline using the target variable only (as you have just done for the weight), and then one considers the residuals between the observed values and this trendline. Those residuals are then regressed on the predictor variables (here: calories, proteins, etc.). \n",
+ "\n",
+ "That is, if you want to obtain better predictions, you may either use more sophisticated interpolation methods that yield better trendlines or you use regression methods (e.g. those from the lecture) in order to find a good model for the residuals using the predictor variables. "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Working with categorical data\n",
+ "\n",
+ "If you want to use the Remark column to make predictions, you will have to find a way to handle categorical data. There are several ways to do so. Let us present two of them.\n",
+ "\n",
+ "1. Predict the mean of the output variable (for example the Weight, or its residual), conditionnally to the value of Remark.\n",
+ "2. Convert the categorical data to numerical data, and use any standard regression method (for example linear regression).\n",
+ "\n",
+ "To convert categorical data to numerical data, again, there are several options. Here are two of them.\n",
+ "\n",
+ "1. If you have only 2 categories, then you are fine by just assigning 1 number to the first, and another to the second category: for example 0 and 1. However, usually, if you have more than 2 categories, it is a bad idea to assign each category a randomly chosen number. This is because 1 is nearer from 2 than it is from 3, but it may not make any sense to say that the first category is more similar to the second than it is to the third.\n",
+ "2. Make a vector with length the number of different categories, where all entries are set to 0, except that of the active category, which is set to 1. For example, if you want to model data with 3 categories, say \"VisitOf\",\"VisitTo\",\"NoRemark\", then you would use a vector $v$ of length 3, where $v=(0,0,1)$, $v=(0,1,0)$ and $v=(1,0,0)$ encode respectively \"NoRemark\", \"VisitTo\", \"VisitOf\". Note that some would prefer an encoding like: $v = (0,0)$, $v=(0,1)$ and $v=(1,0)$.\n",
+ "\n",
+ "Finally, note that you are free to build new categories and more generally new features. You may for example merge different categories into a single one, or create new categories like \"isNA\" and \"isNotNA\". Or create new numerical vectors like the average food weight during the past 7 days, etc."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# A final piece of advice\n",
+ "\n",
+ "There are as many models to predict the weights as you may think of. However, very simple models offen yield among the best results if used with the right input features.\n",
+ "Thus, before starting to think about which (sophisticated) prediction method you may use, have a very close look at the data and think twice at what could be the relevant features to your problem. And if not provided, construct them!"
+ ]
+ }
+ ],
+ "metadata": {
+ "annotations": {
+ "author": "",
+ "categories": [
+ "intelligent-systems-1-2015"
+ ],
+ "date": "2015-05-21",
+ "location": "Kaggle Website",
+ "parent": "IS_SS2015",
+ "submission_date": "2015-06-11",
+ "subtitle": "Exercise Sheet 5, Kaggle competition",
+ "tags": [
+ "IntelligenSystems",
+ "Course"
+ ],
+ "title": "Intelligent Systems 1 - Summer Semester 2015"
+ },
+ "celltoolbar": "Edit Metadata",
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.8"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/is/kaggle/ExerciseSheetKaggle.pdf b/is/kaggle/ExerciseSheetKaggle.pdf
new file mode 100644
index 0000000..2bb5805
--- /dev/null
+++ b/is/kaggle/ExerciseSheetKaggle.pdf
Binary files differ
diff --git a/is/kaggle/sampleSubmission.csv b/is/kaggle/sampleSubmission.csv
new file mode 100644
index 0000000..cb02221
--- /dev/null
+++ b/is/kaggle/sampleSubmission.csv
@@ -0,0 +1,101 @@
+ID,Weight
+183,92.0
+184,92.0
+185,92.0
+186,92.0
+187,92.0
+192,92.0
+197,92.0
+203,92.0
+209,92.0
+210,92.0
+226,92.0
+247,92.0
+257,92.0
+268,92.0
+271,92.0
+288,92.0
+292,92.0
+317,92.0
+341,92.0
+365,92.0
+422,92.0
+441,92.0
+494,92.0
+535,92.0
+581,92.0
+593,92.0
+625,92.0
+638,92.0
+639,92.0
+649,92.0
+657,92.0
+670,92.0
+685,92.0
+690,92.0
+700,92.0
+708,92.0
+724,92.0
+740,92.0
+743,92.0
+758,92.0
+765,92.0
+789,92.0
+809,92.0
+816,92.0
+835,92.0
+844,92.0
+861,92.0
+863,92.0
+873,92.0
+892,92.0
+127,92.0
+160,92.0
+191,92.0
+195,92.0
+196,92.0
+212,92.0
+222,92.0
+229,92.0
+233,92.0
+250,92.0
+254,92.0
+260,92.0
+265,92.0
+270,92.0
+272,92.0
+278,92.0
+286,92.0
+293,92.0
+296,92.0
+299,92.0
+373,92.0
+408,92.0
+489,92.0
+490,92.0
+537,92.0
+542,92.0
+543,92.0
+544,92.0
+545,92.0
+546,92.0
+550,92.0
+561,92.0
+562,92.0
+567,92.0
+611,92.0
+618,92.0
+619,92.0
+634,92.0
+646,92.0
+683,92.0
+689,92.0
+720,92.0
+751,92.0
+812,92.0
+837,92.0
+857,92.0
+859,92.0
+877,92.0
+1048,92.0
+1050,92.0
diff --git a/is/kaggle/test.csv b/is/kaggle/test.csv
new file mode 100644
index 0000000..5cc25ae
--- /dev/null
+++ b/is/kaggle/test.csv
@@ -0,0 +1,101 @@
+ID
+183
+184
+185
+186
+187
+192
+197
+203
+209
+210
+226
+247
+257
+268
+271
+288
+292
+317
+341
+365
+422
+441
+494
+535
+581
+593
+625
+638
+639
+649
+657
+670
+685
+690
+700
+708
+724
+740
+743
+758
+765
+789
+809
+816
+835
+844
+861
+863
+873
+892
+127
+160
+191
+195
+196
+212
+222
+229
+233
+250
+254
+260
+265
+270
+272
+278
+286
+293
+296
+299
+373
+408
+489
+490
+537
+542
+543
+544
+545
+546
+550
+561
+562
+567
+611
+618
+619
+634
+646
+683
+689
+720
+751
+812
+837
+857
+859
+877
+1048
+1050
diff --git a/is/kaggle/train.csv b/is/kaggle/train.csv
new file mode 100644
index 0000000..c5d60ab
--- /dev/null
+++ b/is/kaggle/train.csv
@@ -0,0 +1,1063 @@
+ID,Date,FoodWeight,Weight,Calories,Proteins,Lipids,Carbohydrates,Remarks
+1,2012-05-07,NA,NA,1795,110,47,242,""
+2,2012-05-08,NA,NA,1975,93,69,258,""
+3,2012-05-09,NA,NA,2319,159,51,263,""
+4,2012-05-10,NA,NA,1686,107,23,204,""
+5,2012-05-11,NA,NA,1980,90,39,313,""
+6,2012-05-12,NA,NA,2112,161,64,247,""
+7,2012-05-13,NA,NA,2081,97,83,231,""
+8,2012-05-14,NA,NA,2029,98,28,345,""
+9,2012-05-15,NA,NA,2092,113,55,284,""
+10,2012-05-16,NA,NA,2241,119,69,294,""
+11,2012-05-17,NA,NA,NA,NA,NA,NA,"GetTogether"
+12,2012-05-18,NA,NA,NA,NA,NA,NA,"GetTogether"
+13,2012-05-19,NA,NA,NA,NA,NA,NA,"GetTogether"
+14,2012-05-20,NA,NA,NA,NA,NA,NA,"GetTogether"
+15,2012-05-21,NA,NA,2057,183,49,220,""
+16,2012-05-22,NA,NA,2256,144,52,303,""
+17,2012-05-23,NA,NA,2217,168,39,288,""
+18,2012-05-24,NA,NA,1893,93,53,252,""
+19,2012-05-25,NA,NA,2176,131,61,268,""
+20,2012-05-26,NA,NA,2113,126,54,270,""
+21,2012-05-27,NA,NA,2177,151,17,317,""
+22,2012-05-28,NA,NA,2210,107,59,301,""
+23,2012-05-29,NA,NA,2701,153,79,329,""
+24,2012-05-30,NA,NA,2434,145,64,303,""
+25,2012-05-31,NA,NA,2289,116,35,369,""
+26,2012-06-01,NA,NA,NA,NA,NA,NA,"VisitOf"
+27,2012-06-02,NA,NA,NA,NA,NA,NA,"VisitOf"
+28,2012-06-03,NA,NA,NA,NA,NA,NA,"VisitOf"
+29,2012-06-04,NA,NA,NA,NA,NA,NA,"VisitOf"
+30,2012-06-05,NA,NA,NA,NA,NA,NA,"VisitOf"
+31,2012-06-06,NA,NA,2269,125,77,263,""
+32,2012-06-07,NA,NA,2293,82,86,278,""
+33,2012-06-08,NA,NA,2202,138,75,234,""
+34,2012-06-09,NA,NA,2338,116,63,311,""
+35,2012-06-10,NA,NA,2709,142,103,284,""
+36,2012-06-11,NA,NA,2456,138,155,292,""
+37,2012-06-12,NA,NA,2060,130,50,263,""
+38,2012-06-13,NA,NA,NA,NA,NA,NA,"OnTravel"
+39,2012-06-14,NA,NA,2256,117,72,276,""
+40,2012-06-15,NA,NA,2189,127,90,211,""
+41,2012-06-16,NA,NA,NA,NA,NA,NA,"Other"
+42,2012-06-17,NA,NA,2130,98,66,283,""
+43,2012-06-18,NA,NA,2560,149,57,361,""
+44,2012-06-19,NA,NA,2198,161,73,205,""
+45,2012-06-20,NA,NA,2747,134,68,382,""
+46,2012-06-21,NA,NA,2297,83,50,367,""
+47,2012-06-22,NA,NA,2235,120,48,324,""
+48,2012-06-23,NA,NA,2046,96,64,262,""
+49,2012-06-24,NA,NA,NA,NA,NA,NA,"Ill"
+50,2012-06-25,NA,NA,NA,NA,NA,NA,"Ill"
+51,2012-06-26,NA,NA,2144,114,82,235,""
+52,2012-06-27,NA,NA,NA,NA,NA,NA,"Other"
+53,2012-06-28,NA,NA,2310,79,81,308,""
+54,2012-06-29,NA,NA,2250,127,61,282,""
+55,2012-06-30,NA,NA,2139,70,52,342,""
+56,2012-07-01,NA,NA,2087,131,62,242,""
+57,2012-07-02,NA,NA,2281,129,57,38,""
+58,2012-07-03,NA,NA,2571,128,100,263,""
+59,2012-07-04,NA,NA,2178,111,63,275,""
+60,2012-07-05,NA,NA,2276,145,77,241,""
+61,2012-07-06,NA,NA,2123,129,65,244,""
+62,2012-07-07,NA,NA,NA,NA,NA,NA,"GetTogether"
+63,2012-07-08,NA,NA,NA,NA,NA,NA,"GetTogether"
+64,2012-07-09,NA,NA,1900,138,60,186,""
+65,2012-07-10,NA,NA,2224,155,56,262,""
+66,2012-07-11,NA,NA,2387,110,58,339,""
+67,2012-07-12,NA,NA,2312,119,38,373,""
+68,2012-07-13,NA,NA,NA,NA,NA,NA,"Restaurant"
+69,2012-07-14,NA,NA,1975,85,53,284,""
+70,2012-07-15,NA,NA,2426,127,83,342,""
+71,2012-07-16,NA,NA,2094,143,53,261,""
+72,2012-07-17,NA,NA,2388,169,62,273,""
+73,2012-07-18,NA,NA,2001,108,62,246,""
+74,2012-07-19,NA,NA,2251,108,57,324,""
+75,2012-07-20,NA,NA,2824,132,108,316,""
+76,2012-07-21,NA,NA,2113,99,68,271,""
+77,2012-07-22,NA,NA,NA,NA,NA,NA,"Restaurant"
+78,2012-07-23,NA,NA,2484,160,55,383,""
+79,2012-07-24,NA,NA,2211,132,50,302,""
+80,2012-07-25,NA,NA,2238,114,44,341,""
+81,2012-07-26,NA,NA,2258,106,71,281,""
+82,2012-07-27,NA,NA,2042,85,63,276,""
+83,2012-07-28,NA,NA,2772,161,92,311,""
+84,2012-07-29,NA,NA,2420,146,78,300,""
+85,2012-07-30,NA,NA,2293,169,72,235,""
+86,2012-07-31,NA,NA,2262,104,62,307,""
+87,2012-08-01,NA,NA,2247,119,79,272,""
+88,2012-08-02,NA,NA,2345,182,36,315,""
+89,2012-08-03,NA,NA,2615,122,84,341,""
+90,2012-08-04,NA,NA,2494,129,72,347,""
+91,2012-08-05,NA,NA,NA,NA,NA,NA,"Restaurant"
+92,2012-08-06,NA,NA,2503,131,72,352,""
+93,2012-08-07,NA,NA,2200,195,23,353,""
+94,2012-08-08,NA,NA,2170,164,40,284,""
+95,2012-08-09,NA,NA,2278,155,56,283,""
+96,2012-08-10,NA,NA,NA,NA,NA,NA,"VisitOf"
+97,2012-08-11,NA,NA,NA,NA,NA,NA,"Holiday"
+98,2012-08-12,NA,NA,NA,NA,NA,NA,"Holiday"
+99,2012-08-13,NA,NA,NA,NA,NA,NA,"Holiday"
+100,2012-08-14,NA,NA,NA,NA,NA,NA,"Holiday"
+101,2012-08-15,NA,NA,NA,NA,NA,NA,"Holiday"
+102,2012-08-16,NA,NA,NA,NA,NA,NA,"Holiday"
+103,2012-08-17,NA,NA,NA,NA,NA,NA,"Holiday"
+104,2012-08-18,NA,NA,NA,NA,NA,NA,"Holiday"
+105,2012-08-19,NA,NA,NA,NA,NA,NA,"Holiday"
+106,2012-08-20,NA,NA,NA,NA,NA,NA,"Holiday"
+107,2012-08-21,NA,NA,NA,NA,NA,NA,"Holiday"
+108,2012-08-22,NA,NA,NA,NA,NA,NA,"Holiday"
+109,2012-08-23,NA,NA,NA,NA,NA,NA,"Holiday"
+110,2012-08-24,NA,NA,NA,NA,NA,NA,"Holiday"
+111,2012-08-25,NA,NA,2351,123,74,293,""
+112,2012-08-26,NA,NA,2271,119,95,228,""
+113,2012-08-27,NA,NA,2581,143,60,361,""
+114,2012-08-28,NA,NA,2335,162,62,263,""
+115,2012-08-29,NA,NA,NA,NA,NA,NA,"Other"
+116,2012-08-30,NA,NA,1945,131,42,250,""
+117,2012-08-31,NA,NA,NA,NA,NA,NA,""
+118,2012-09-01,NA,NA,2849,170,104,301,""
+119,2012-09-02,NA,NA,2027,115,83,198,""
+120,2012-09-03,NA,NA,1773,81,48,247,""
+121,2012-09-04,NA,NA,NA,NA,NA,NA,"VisitTo"
+122,2012-09-05,NA,NA,1881,88,40,265,""
+123,2012-09-06,NA,91.4,2090,115,52,249,""
+124,2012-09-07,NA,NA,2341,108,82,285,""
+125,2012-09-08,NA,92.2,2468,128,83,295,""
+126,2012-09-09,NA,92.6,2010,137,43,237,""
+127,2012-09-10,NA,NA,2048,118,48,275,""
+128,2012-09-11,NA,92,2285,110,58,324,""
+129,2012-09-12,NA,91.7,1958,127,50,244,""
+130,2012-09-13,NA,91.4,NA,NA,NA,NA,"Holiday"
+131,2012-09-14,NA,NA,NA,NA,NA,NA,"Holiday"
+132,2012-09-15,NA,NA,NA,NA,NA,NA,"Holiday"
+133,2012-09-16,NA,NA,NA,NA,NA,NA,"Holiday"
+134,2012-09-17,NA,NA,NA,NA,NA,NA,"Holiday"
+135,2012-09-18,NA,NA,NA,NA,NA,NA,"Holiday"
+136,2012-09-19,NA,NA,NA,NA,NA,NA,"Holiday"
+137,2012-09-20,NA,NA,NA,NA,NA,NA,"Holiday"
+138,2012-09-21,NA,NA,NA,NA,NA,NA,"Holiday"
+139,2012-09-22,NA,NA,NA,NA,NA,NA,"Holiday"
+140,2012-09-23,NA,NA,NA,NA,NA,NA,"Holiday"
+141,2012-09-24,NA,NA,NA,NA,NA,NA,"Holiday"
+142,2012-09-25,NA,NA,NA,NA,NA,NA,"Holiday"
+143,2012-09-26,NA,NA,NA,NA,NA,NA,"Holiday"
+144,2012-09-27,NA,NA,NA,NA,NA,NA,"Holiday"
+145,2012-09-28,NA,NA,NA,NA,NA,NA,"Holiday"
+146,2012-09-29,NA,NA,NA,NA,NA,NA,"Holiday"
+147,2012-09-30,NA,NA,NA,NA,NA,NA,"Holiday"
+148,2012-10-01,NA,93.6,2082,86,85,237,""
+149,2012-10-02,NA,94,2131,132,48,293,""
+150,2012-10-03,NA,93.3,1976,93,46,294,""
+151,2012-10-04,NA,93.2,2221,187,69,205,""
+152,2012-10-05,NA,NA,NA,NA,NA,NA,"Funeral"
+153,2012-10-06,NA,93.3,2142,150,41,288,""
+154,2012-10-07,NA,93.3,2152,120,43,314,""
+155,2012-10-08,NA,94,2563,167,77,282,""
+156,2012-10-09,NA,92.3,2218,102,37,349,""
+157,2012-10-10,NA,92.1,2376,109,72,315,""
+158,2012-10-11,NA,93.1,2163,110,52,298,""
+159,2012-10-12,NA,NA,2250,104,55,325,""
+160,2012-10-13,NA,NA,2496,80,68,371,""
+161,2012-10-14,NA,91.9,NA,NA,NA,NA,"VisitTo"
+162,2012-10-15,NA,NA,NA,NA,NA,NA,"VisitTo"
+163,2012-10-16,NA,NA,NA,NA,NA,NA,"VisitTo"
+164,2012-10-17,NA,NA,NA,NA,NA,NA,"VisitTo"
+165,2012-10-18,NA,NA,NA,NA,NA,NA,"VisitTo"
+166,2012-10-19,NA,NA,NA,NA,NA,NA,"VisitTo"
+167,2012-10-20,NA,94.2,NA,NA,NA,NA,"Restaurant"
+168,2012-10-21,NA,94.1,2050,118,98,163,""
+169,2012-10-22,NA,93.5,2578,147,52,370,""
+170,2012-10-23,NA,NA,NA,NA,NA,NA,"VisitOf"
+171,2012-10-24,NA,NA,NA,NA,NA,NA,"OperationAtHospital"
+172,2012-10-25,NA,NA,NA,NA,NA,NA,"OperationAtHospital"
+173,2012-10-26,NA,NA,NA,NA,NA,NA,"OperationAtHospital"
+174,2012-10-27,NA,NA,NA,NA,NA,NA,"OperationAtHospital"
+175,2012-10-28,NA,NA,NA,NA,NA,NA,"OperationAtHospital"
+176,2012-10-29,NA,92,1820,84,39,276,""
+177,2012-10-30,NA,92.2,1968,109,47,269,""
+178,2012-10-31,NA,91.4,2368,94,53,370,""
+179,2012-11-01,NA,91.8,1953,89,63,276,""
+180,2012-11-02,NA,92.1,1897,95,40,277,""
+181,2012-11-03,NA,92.2,NA,NA,NA,NA,"Restaurant"
+182,2012-11-04,NA,92.2,2353,101,57,340,""
+183,2012-11-05,NA,NA,2201,93,47,327,""
+184,2012-11-06,NA,NA,2387,159,59,300,""
+185,2012-11-07,NA,NA,2106,87,30,370,""
+186,2012-11-08,NA,NA,1914,78,30,328,""
+187,2012-11-09,NA,NA,2311,106,38,374,""
+188,2012-11-10,NA,91.5,1811,96,51,212,""
+189,2012-11-11,NA,91.2,2257,125,45,332,""
+190,2012-11-12,NA,91.4,NA,NA,NA,NA,"ComputerFailure"
+191,2012-11-13,NA,NA,2297,121,44,343,""
+192,2012-11-14,NA,NA,NA,NA,NA,NA,"Lazy"
+193,2012-11-15,NA,91.6,NA,NA,NA,NA,"VisitTo"
+194,2012-11-16,NA,91.8,2390,146,77,257,""
+195,2012-11-17,NA,NA,2236,104,67,289,""
+196,2012-11-18,NA,NA,2174,102,63,292,""
+197,2012-11-19,NA,NA,2359,148,33,311,""
+198,2012-11-20,NA,91.5,2648,115,68,388,""
+199,2012-11-21,NA,91,3316,111,78,538,""
+200,2012-11-22,NA,NA,NA,NA,NA,NA,"VisitTo"
+201,2012-11-23,NA,NA,2154,81,70,293,""
+202,2012-11-24,NA,NA,2452,133,81,295,""
+203,2012-11-25,NA,NA,2488,97,115,262,""
+204,2012-11-26,NA,91.4,2314,128,42,335,""
+205,2012-11-27,NA,91,2164,100,39,347,""
+206,2012-11-28,NA,91.1,2226,91,43,320,""
+207,2012-11-29,NA,90.9,NA,NA,NA,NA,"VisitOf"
+208,2012-11-30,NA,NA,NA,NA,NA,NA,"VisitOf"
+209,2012-12-01,NA,NA,2826,129,90,367,""
+210,2012-12-02,NA,NA,2197,137,51,295,""
+211,2012-12-03,NA,90.8,2547,151,58,346,""
+212,2012-12-04,NA,NA,2268,104,54,324,""
+213,2012-12-05,NA,91.2,2473,146,65,317,""
+214,2012-12-06,NA,91.2,2456,97,71,341,""
+215,2012-12-07,NA,NA,NA,NA,NA,NA,"VisitTo"
+216,2012-12-08,NA,92.6,2678,95,94,355,""
+217,2012-12-09,NA,92.4,NA,NA,NA,NA,"Restaurant"
+218,2012-12-10,NA,93,2105,116,36,320,""
+219,2012-12-11,NA,92.1,2041,137,33,289,""
+220,2012-12-12,NA,91.3,2607,99,68,386,""
+221,2012-12-13,NA,92,2305,107,82,289,""
+222,2012-12-14,NA,NA,2291,157,76,225,""
+223,2012-12-15,NA,92,2844,88,64,468,""
+224,2012-12-16,NA,91.9,2583,85,75,384,""
+225,2012-12-17,NA,91.1,3023,164,85,382,""
+226,2012-12-18,NA,NA,2138,80,86,249,""
+227,2012-12-19,NA,91.8,3135,135,88,437,""
+228,2012-12-20,NA,91.8,2328,123,43,354,""
+229,2012-12-21,NA,NA,NA,NA,NA,NA,"VisitOf"
+230,2012-12-22,NA,91.6,2551,111,48,406,""
+231,2012-12-23,NA,92.6,NA,NA,NA,NA,"Holiday"
+232,2012-12-24,NA,93.6,NA,NA,NA,NA,"Holiday"
+233,2012-12-25,NA,NA,NA,NA,NA,NA,"Holiday"
+234,2012-12-26,NA,92.4,NA,NA,NA,NA,"Holiday"
+235,2012-12-27,NA,NA,NA,NA,NA,NA,"Holiday"
+236,2012-12-28,NA,NA,NA,NA,NA,NA,"Holiday"
+237,2012-12-29,NA,NA,NA,NA,NA,NA,"Holiday"
+238,2012-12-30,NA,NA,NA,NA,NA,NA,"Holiday"
+239,2012-12-31,NA,NA,NA,NA,NA,NA,"Holiday"
+240,2013-01-01,NA,NA,NA,NA,NA,NA,"Holiday"
+241,2013-01-02,NA,NA,NA,NA,NA,NA,"Holiday"
+242,2013-01-03,NA,NA,NA,NA,NA,NA,"Holiday"
+243,2013-01-04,NA,NA,NA,NA,NA,NA,"Holiday"
+244,2013-01-05,NA,NA,NA,NA,NA,NA,"Holiday"
+245,2013-01-06,NA,92.3,NA,NA,NA,NA,""
+246,2013-01-07,NA,93.2,2337,169,53,284,""
+247,2013-01-08,NA,NA,2668,123,62,395,""
+248,2013-01-09,NA,91.8,2418,127,55,338,""
+249,2013-01-10,NA,92.6,2891,101,72,444,""
+250,2013-01-11,NA,NA,2543,118,71,350,""
+251,2013-01-12,NA,NA,NA,NA,NA,NA,"Other"
+252,2013-01-13,NA,NA,NA,NA,NA,NA,"Other"
+253,2013-01-14,NA,NA,2349,147,80,260,""
+254,2013-01-15,NA,NA,2392,130,76,291,""
+255,2013-01-16,NA,NA,2239,91,69,308,""
+256,2013-01-17,NA,93.8,2560,124,72,337,""
+257,2013-01-18,NA,NA,2182,92,87,254,""
+258,2013-01-19,NA,91.8,2235,93,80,275,""
+259,2013-01-20,NA,92.4,2286,116,81,271,""
+260,2013-01-21,NA,NA,2854,150,88,362,""
+261,2013-01-22,NA,91.4,2342,121,45,348,""
+262,2013-01-23,NA,91.7,2239,132,64,281,""
+263,2013-01-24,NA,91.6,3149,104,69,519,"Funeral"
+264,2013-01-25,NA,92.1,2275,151,82,223,""
+265,2013-01-26,NA,NA,2283,100,56,342,""
+266,2013-01-27,27.69,91.4,2866,82,93,431,"VisitTo"
+267,2013-01-28,24.91,91.6,1959,116,39,281,""
+268,2013-01-29,29.38,NA,2900,178,92,337,""
+269,2013-01-30,35.24,NA,2215,97,33,377,""
+270,2013-01-31,26.27,NA,2250,95,33,387,""
+271,2013-02-01,23.85,NA,2266,80,71,314,""
+272,2013-02-02,NA,NA,NA,NA,NA,NA,"Restaurant"
+273,2013-02-03,27.26,92.2,2862,134,104,335,""
+274,2013-02-04,24.36,92.2,2237,186,56,274,""
+275,2013-02-05,24.27,92,2228,135,49,299,""
+276,2013-02-06,29.48,91.7,2379,106,89,277,""
+277,2013-02-07,23.87,90.8,1967,107,25,321,""
+278,2013-02-08,20.9,NA,2054,79,55,305,""
+279,2013-02-09,27.94,90.2,2299,127,60,322,""
+280,2013-02-10,NA,90.5,NA,NA,NA,NA,"Other"
+281,2013-02-11,22.43,91,2101,83,55,309,""
+282,2013-02-12,27.54,90.7,2363,122,46,355,""
+283,2013-02-13,25.03,90.9,2167,88,54,333,""
+284,2013-02-14,25.3,90.3,2278,88,89,269,""
+285,2013-02-15,30.88,90.5,2528,132,67,337,""
+286,2013-02-16,27.6,NA,2109,120,69,240,""
+287,2013-02-17,18.12,90.6,1877,109,51,240,""
+288,2013-02-18,26.23,NA,2373,113,76,303,""
+289,2013-02-19,28.29,89.7,2681,114,75,382,""
+290,2013-02-20,22.52,90.2,2151,86,56,333,""
+291,2013-02-21,26.01,90.4,2267,88,78,288,""
+292,2013-02-22,24.05,NA,2416,154,82,261,""
+293,2013-02-23,28.92,NA,2658,157,90,300,""
+294,2013-02-24,25.33,90.5,2370,116,60,319,""
+295,2013-02-25,27.65,90,2398,91,68,342,""
+296,2013-02-26,24.21,NA,2203,126,67,268,""
+297,2013-02-27,NA,NA,NA,NA,NA,NA,"VisitTo"
+298,2013-02-28,NA,NA,NA,NA,NA,NA,"VisitTo"
+299,2013-03-01,20.65,NA,2306,122,72,284,""
+300,2013-03-02,23.9,92.3,2463,130,82,292,""
+301,2013-03-03,22.21,91.6,2133,127,56,276,""
+302,2013-03-04,29.13,91.2,2350,104,67,327,""
+303,2013-03-05,27.4,90.1,2294,111,70,302,""
+304,2013-03-06,23.42,90.5,2126,91,51,318,""
+305,2013-03-07,24.32,90.1,2153,117,53,295,""
+306,2013-03-08,28.73,NA,2542,119,90,307,""
+307,2013-03-09,24.53,90.9,3029,117,125,356,""
+308,2013-03-10,NA,90.3,NA,NA,NA,NA,"Restaurant"
+309,2013-03-11,26.45,91.6,2034,129,48,266,""
+310,2013-03-12,29.78,91.2,3109,180,109,344,""
+311,2013-03-13,23.82,90.5,2139,124,54,281,""
+312,2013-03-14,22.89,90,2748,134,74,377,""
+313,2013-03-15,26.42,90.2,2681,120,103,318,""
+314,2013-03-16,NA,90.6,NA,NA,NA,NA,"VisitOfFamily"
+315,2013-03-17,NA,91.4,NA,NA,NA,NA,"VisitOfFamily"
+316,2013-03-18,29.95,92.1,2224,97,39,366,""
+317,2013-03-19,34.63,NA,3129,133,64,500,""
+318,2013-03-20,20.08,91.3,2265,104,65,313,""
+319,2013-03-21,NA,90.5,NA,NA,NA,NA,"Restaurant"
+320,2013-03-22,23.21,91.8,2307,119,83,269,""
+321,2013-03-23,NA,90.3,NA,NA,NA,NA,"VisitOf"
+322,2013-03-24,NA,91.4,NA,NA,NA,NA,"VisitOf"
+323,2013-03-25,25.26,91.4,2491,122,75,327,""
+324,2013-03-26,23.08,90.6,2485,95,47,402,""
+325,2013-03-27,27.71,91,2416,131,67,312,""
+326,2013-03-28,31.35,91.4,3029,156,82,413,""
+327,2013-03-29,25.21,89.8,1880,79,47,315,""
+328,2013-03-30,NA,NA,NA,NA,NA,NA,"Holiday"
+329,2013-03-31,20.97,NA,2172,66,66,265,"Holiday"
+330,2013-04-01,21.58,NA,2050,75,54,298,"Holiday"
+331,2013-04-02,27.56,NA,2161,113,49,312,"Holiday"
+332,2013-04-03,24.93,NA,2098,96,60,310,"Holiday"
+333,2013-04-04,26.19,NA,2292,118,88,250,"Holiday"
+334,2013-04-05,16.91,NA,1987,91,110,256,"Holiday"
+335,2013-04-06,NA,NA,NA,NA,NA,NA,"Other"
+336,2013-04-07,NA,NA,NA,NA,NA,NA,"Other"
+337,2013-04-08,29.78,90.7,3600,138,83,566,""
+338,2013-04-09,30.94,90.5,2476,163,95,227,""
+339,2013-04-10,28.4,90.2,2799,135,107,254,""
+340,2013-04-11,26.34,90,2283,110,31,383,""
+341,2013-04-12,33.11,NA,3457,193,91,446,""
+342,2013-04-13,NA,NA,NA,NA,NA,NA,"VisitTo"
+343,2013-04-14,21.54,91.9,2589,112,99,316,""
+344,2013-04-15,21.24,91.8,2092,135,56,258,""
+345,2013-04-16,24.33,91.1,2798,110,104,356,""
+346,2013-04-17,26.66,90.6,2339,124,50,341,""
+347,2013-04-18,42.18,NA,2667,102,68,407,""
+348,2013-04-19,32.87,91,3343,145,124,410,""
+349,2013-04-20,NA,90.7,NA,NA,NA,NA,"Restaurant"
+350,2013-04-21,27.9,92.5,2205,126,60,284,""
+351,2013-04-22,NA,NA,NA,NA,NA,NA,"Restaurant"
+352,2013-04-23,38.75,91.7,3545,190,90,483,""
+353,2013-04-24,13.57,90.9,1077,69,46,96,"Other"
+354,2013-04-25,22.21,89.9,2396,66,85,288,"Other"
+355,2013-04-26,NA,90.5,NA,NA,NA,NA,"VisitOfFamily"
+356,2013-04-27,NA,91.7,NA,NA,NA,NA,""
+357,2013-04-28,NA,NA,NA,NA,NA,NA,""
+358,2013-04-29,NA,91.3,NA,NA,NA,NA,""
+359,2013-04-30,25.12,NA,2868,107,88,402,""
+360,2013-05-01,22.65,92,2404,203,107,228,""
+361,2013-05-02,NA,92.1,NA,NA,NA,NA,""
+362,2013-05-03,NA,NA,NA,NA,NA,NA,""
+363,2013-05-04,NA,92,NA,NA,NA,NA,""
+364,2013-05-05,NA,92.6,NA,NA,NA,NA,""
+365,2013-05-06,34.89,NA,2231,126,49,317,""
+366,2013-05-07,36.6,93.6,2447,98,87,313,""
+367,2013-05-08,27.67,92.8,2701,136,73,365,""
+368,2013-05-09,NA,92.4,NA,NA,NA,NA,"VisitTo"
+369,2013-05-10,NA,NA,NA,NA,NA,NA,"VisitTo"
+370,2013-05-11,NA,NA,NA,NA,NA,NA,"VisitTo"
+371,2013-05-12,NA,NA,NA,NA,NA,NA,"VisitTo"
+372,2013-05-13,22.07,93.5,2374,141,70,291,""
+373,2013-05-14,39.15,NA,3075,205,89,361,""
+374,2013-05-15,29.35,92.5,2231,83,62,331,""
+375,2013-05-16,30.89,92.6,3637,147,163,396,""
+376,2013-05-17,26.25,91.4,2444,108,73,334,""
+377,2013-05-18,NA,91.7,NA,NA,NA,NA,"VisitOf"
+378,2013-05-19,NA,92,NA,NA,NA,NA,"VisitOf"
+379,2013-05-20,NA,92.5,NA,NA,NA,NA,"VisitOf"
+380,2013-05-21,28.68,NA,3166,160,77,444,""
+381,2013-05-22,32.27,92.1,2109,102,45,319,""
+382,2013-05-23,NA,92.6,NA,NA,NA,NA,"GetTogether"
+383,2013-05-24,NA,NA,NA,NA,NA,NA,""
+384,2013-05-25,NA,NA,NA,NA,NA,NA,"VisitTo"
+385,2013-05-26,NA,NA,NA,NA,NA,NA,"OnTravel"
+386,2013-05-27,NA,92.5,NA,NA,NA,NA,"VisitOf"
+387,2013-05-28,26.82,93.5,2331,126,50,343,""
+388,2013-05-29,21.93,93.1,2268,116,62,307,""
+389,2013-05-30,34.14,92.6,2700,136,85,342,""
+390,2013-05-31,35.38,92.4,2957,158,48,469,""
+391,2013-06-01,NA,92.9,NA,NA,NA,NA,"VisitOf"
+392,2013-06-02,13.67,NA,2114,75,115,191,""
+393,2013-06-03,27.37,91.9,2297,124,57,314,""
+394,2013-06-04,35.21,91.2,2351,90,54,327,""
+395,2013-06-05,35.44,92,3290,135,111,430,""
+396,2013-06-06,33.83,91.2,2228,140,45,309,""
+397,2013-06-07,32.03,92.1,2217,95,65,306,""
+398,2013-06-08,NA,NA,NA,NA,NA,NA,"VisitTo"
+399,2013-06-09,23.83,92.6,2134,122,62,264,""
+400,2013-06-10,23.15,91.9,2558,126,66,358,""
+401,2013-06-11,30.92,91.3,2107,156,43,270,""
+402,2013-06-12,30.31,91.4,2057,125,40,293,""
+403,2013-06-13,34.11,91.2,2151,119,33,341,""
+404,2013-06-14,NA,91.7,NA,NA,NA,NA,"VisitTo"
+405,2013-06-15,28.95,NA,2418,160,47,311,""
+406,2013-06-16,NA,91.8,NA,NA,NA,NA,"VisitTo"
+407,2013-06-17,31,92.6,2211,171,49,264,""
+408,2013-06-18,36.42,NA,2274,167,23,342,""
+409,2013-06-19,38.14,91.9,2274,137,33,346,""
+410,2013-06-20,NA,91.7,NA,NA,NA,NA,"VisitTo"
+411,2013-06-21,NA,NA,NA,NA,NA,NA,"VisitTo"
+412,2013-06-22,NA,NA,NA,NA,NA,NA,"GetTogether"
+413,2013-06-23,NA,NA,NA,NA,NA,NA,"VisitTo"
+414,2013-06-24,26.52,92.6,2165,169,65,215,""
+415,2013-06-25,27.39,93.4,2579,159,57,346,""
+416,2013-06-26,NA,93.6,NA,NA,NA,NA,"VisitTo"
+417,2013-06-27,26.34,93.6,2375,162,42,327,""
+418,2013-06-28,33.96,91.6,2666,176,78,305,""
+419,2013-06-29,26.26,92.1,2290,189,60,241,""
+420,2013-06-30,23.59,92,2235,128,76,248,""
+421,2013-07-01,27.55,91.6,2351,145,49,328,""
+422,2013-07-02,28.25,NA,2398,139,74,286,""
+423,2013-07-03,28.31,92.4,2601,159,70,322,""
+424,2013-07-04,NA,NA,NA,NA,NA,NA,"GetTogether"
+425,2013-07-05,NA,NA,NA,NA,NA,NA,"GetTogether"
+426,2013-07-06,NA,NA,NA,NA,NA,NA,"GetTogether"
+427,2013-07-07,NA,93.7,NA,NA,NA,NA,""
+428,2013-07-08,27.41,93.6,2284,116,86,244,""
+429,2013-07-09,NA,94.6,NA,NA,NA,NA,"VisitOf"
+430,2013-07-10,NA,94.6,NA,NA,NA,NA,"VisitOf"
+431,2013-07-11,NA,NA,NA,NA,NA,NA,"VisitOf"
+432,2013-07-12,NA,NA,NA,NA,NA,NA,"VisitOf"
+433,2013-07-13,NA,NA,NA,NA,NA,NA,"VisitOf"
+434,2013-07-14,NA,NA,NA,NA,NA,NA,"VisitOf"
+435,2013-07-15,NA,NA,NA,NA,NA,NA,"VisitOf"
+436,2013-07-16,NA,NA,NA,NA,NA,NA,"VisitOf"
+437,2013-07-17,NA,NA,NA,NA,NA,NA,"VisitOf"
+438,2013-07-18,NA,NA,NA,NA,NA,NA,"VisitOf"
+439,2013-07-19,NA,NA,NA,NA,NA,NA,"VisitOf"
+440,2013-07-20,NA,NA,NA,NA,NA,NA,"VisitOf"
+441,2013-07-21,23.7,NA,2179,148,62,247,""
+442,2013-07-22,26.38,94.5,2176,158,53,264,""
+443,2013-07-23,39.64,93.3,2126,162,47,253,""
+444,2013-07-24,23.71,93.5,2040,150,71,197,""
+445,2013-07-25,31.75,91.9,2105,163,30,293,""
+446,2013-07-26,38.24,92.5,2217,125,78,272,""
+447,2013-07-27,NA,93.1,NA,NA,NA,NA,""
+448,2013-07-28,NA,NA,NA,NA,NA,NA,"Holiday"
+449,2013-07-29,NA,NA,NA,NA,NA,NA,"Holiday"
+450,2013-07-30,NA,NA,NA,NA,NA,NA,"Holiday"
+451,2013-07-31,NA,NA,NA,NA,NA,NA,"Holiday"
+452,2013-08-01,NA,NA,NA,NA,NA,NA,"Holiday"
+453,2013-08-02,NA,NA,NA,NA,NA,NA,"Holiday"
+454,2013-08-03,NA,NA,NA,NA,NA,NA,"Holiday"
+455,2013-08-04,NA,NA,NA,NA,NA,NA,"Holiday"
+456,2013-08-05,NA,NA,NA,NA,NA,NA,"Holiday"
+457,2013-08-06,NA,NA,NA,NA,NA,NA,"Holiday"
+458,2013-08-07,NA,NA,NA,NA,NA,NA,"Holiday"
+459,2013-08-08,NA,NA,NA,NA,NA,NA,"Holiday"
+460,2013-08-09,NA,NA,NA,NA,NA,NA,"Holiday"
+461,2013-08-10,NA,NA,NA,NA,NA,NA,"Holiday"
+462,2013-08-11,NA,NA,NA,NA,NA,NA,"Holiday"
+463,2013-08-12,NA,NA,NA,NA,NA,NA,"Holiday"
+464,2013-08-13,NA,NA,NA,NA,NA,NA,"Holiday"
+465,2013-08-14,NA,NA,NA,NA,NA,NA,"Holiday"
+466,2013-08-15,NA,NA,NA,NA,NA,NA,"Holiday"
+467,2013-08-16,NA,NA,NA,NA,NA,NA,"Holiday"
+468,2013-08-17,NA,NA,NA,NA,NA,NA,"Holiday"
+469,2013-08-18,NA,NA,NA,NA,NA,NA,"Holiday"
+470,2013-08-19,NA,NA,NA,NA,NA,NA,"Holiday"
+471,2013-08-20,NA,NA,NA,NA,NA,NA,"Holiday"
+472,2013-08-21,NA,NA,NA,NA,NA,NA,"Holiday"
+473,2013-08-22,NA,NA,NA,NA,NA,NA,"Holiday"
+474,2013-08-23,NA,NA,NA,NA,NA,NA,"Holiday"
+475,2013-08-24,NA,NA,NA,NA,NA,NA,"Holiday"
+476,2013-08-25,NA,NA,NA,NA,NA,NA,"Holiday"
+477,2013-08-26,23.54,96.3,2024,175,34,249,""
+478,2013-08-27,23.4,96.6,2042,150,27,296,""
+479,2013-08-28,28.15,96.5,2190,152,52,282,""
+480,2013-08-29,25.38,95,1972,147,70,189,""
+481,2013-08-30,19.62,94.7,2044,132,65,229,""
+482,2013-08-31,NA,94.8,NA,NA,NA,NA,""
+483,2013-09-01,NA,NA,NA,NA,NA,NA,"VisitOf"
+484,2013-09-02,NA,NA,NA,NA,NA,NA,"VisitOf"
+485,2013-09-03,NA,NA,NA,NA,NA,NA,"VisitOf"
+486,2013-09-04,NA,NA,NA,NA,NA,NA,"VisitOf"
+487,2013-09-05,21.62,96.1,2306,168,79,227,""
+488,2013-09-06,22.09,95.9,2109,148,59,241,""
+489,2013-09-07,24.26,NA,2386,155,64,275,""
+490,2013-09-08,17.56,NA,2241,82,117,214,""
+491,2013-09-09,NA,94.6,NA,NA,NA,NA,"VisitTo"
+492,2013-09-10,NA,94.6,NA,NA,NA,NA,"VisitOf"
+493,2013-09-11,18.3,95.5,2023,195,39,222,""
+494,2013-09-12,NA,NA,NA,NA,NA,NA,"VisitOf"
+495,2013-09-13,23.6,95.2,2113,150,44,275,""
+496,2013-09-14,25.96,94.9,2451,171,83,269,""
+497,2013-09-15,NA,NA,NA,NA,NA,NA,"VisitOf"
+498,2013-09-16,24.99,96.1,2523,129,40,407,""
+499,2013-09-17,27.52,96,2138,164,28,303,""
+500,2013-09-18,31.6,95.3,2272,178,45,287,""
+501,2013-09-19,26.88,94.6,2194,112,71,268,""
+502,2013-09-20,NA,NA,NA,NA,NA,NA,"VisitTo"
+503,2013-09-21,NA,NA,NA,NA,NA,NA,"VisitTo"
+504,2013-09-22,NA,NA,NA,NA,NA,NA,"VisitTo"
+505,2013-09-23,29.85,NA,2443,161,59,314,""
+506,2013-09-24,NA,NA,NA,NA,NA,NA,"VisitOf"
+507,2013-09-25,NA,NA,NA,NA,NA,NA,"VisitOf"
+508,2013-09-26,27.63,NA,3092,198,101,334,""
+509,2013-09-27,21.81,NA,2238,150,55,270,""
+510,2013-09-28,NA,NA,NA,NA,NA,NA,"VisitTo"
+511,2013-09-29,NA,NA,NA,NA,NA,NA,"VisitTo"
+512,2013-09-30,30.49,NA,2385,150,73,278,""
+513,2013-10-01,NA,NA,NA,NA,NA,NA,"OnTravel"
+514,2013-10-02,NA,NA,NA,NA,NA,NA,"Holiday"
+515,2013-10-03,NA,NA,NA,NA,NA,NA,"Holiday"
+516,2013-10-04,NA,NA,NA,NA,NA,NA,"Holiday"
+517,2013-10-05,NA,NA,NA,NA,NA,NA,"Holiday"
+518,2013-10-06,NA,NA,NA,NA,NA,NA,"Holiday"
+519,2013-10-07,20.64,96.5,2585,105,99,328,""
+520,2013-10-08,26.51,97.1,2843,161,76,385,""
+521,2013-10-09,27.77,96.1,2575,252,62,249,""
+522,2013-10-10,29.9,95.7,2218,156,45,286,""
+523,2013-10-11,30.11,95.1,2262,179,49,259,""
+524,2013-10-12,27.48,94.8,2725,182,20,448,""
+525,2013-10-13,28.42,94.3,2116,159,40,272,""
+526,2013-10-14,34.2,94.7,2359,170,27,350,""
+527,2013-10-15,29.17,94.7,2198,177,44,271,""
+528,2013-10-16,28.06,95.1,2979,189,84,357,""
+529,2013-10-17,28.5,94.2,2165,163,76,202,""
+530,2013-10-18,27.36,94.7,2275,158,54,275,""
+531,2013-10-19,NA,NA,NA,NA,NA,NA,"VisitTo"
+532,2013-10-20,NA,NA,NA,NA,NA,NA,"GetTogether"
+533,2013-10-21,NA,NA,NA,NA,NA,NA,"Funeral"
+534,2013-10-22,21.73,NA,2485,172,93,237,""
+535,2013-10-23,26.05,NA,2297,140,62,281,""
+536,2013-10-24,25.52,95.1,2214,193,60,222,""
+537,2013-10-25,21.5,NA,2375,182,62,268,""
+538,2013-10-26,NA,NA,NA,NA,NA,NA,"VisitTo"
+539,2013-10-27,NA,NA,NA,NA,NA,NA,"VisitTo"
+540,2013-10-28,22.84,96.1,2501,185,67,290,""
+541,2013-10-29,27.41,95.6,2697,183,82,323,""
+542,2013-10-30,26.17,NA,2326,181,45,295,""
+543,2013-10-31,27.75,NA,2022,147,50,299,""
+544,2013-11-01,25.2,NA,2311,152,45,319,""
+545,2013-11-02,24.21,NA,2802,125,112,336,""
+546,2013-11-03,26.38,NA,2923,137,83,420,""
+547,2013-11-04,20.74,95.2,2091,150,55,254,""
+548,2013-11-05,32.72,95.1,2342,183,30,326,""
+549,2013-11-06,29.21,94.3,2037,156,26,290,""
+550,2013-11-07,27.72,NA,2082,111,69,251,""
+551,2013-11-08,25.76,93.7,2213,150,56,273,""
+552,2013-11-09,NA,94.7,NA,NA,NA,NA,"VisitOf"
+553,2013-11-10,NA,NA,NA,NA,NA,NA,"VisitOf"
+554,2013-11-11,NA,NA,NA,NA,NA,NA,"VisitOf"
+555,2013-11-12,NA,94.4,NA,NA,NA,NA,"VisitOf"
+556,2013-11-13,NA,NA,NA,NA,NA,NA,"VisitOf"
+557,2013-11-14,19.07,95.9,1979,185,70,145,""
+558,2013-11-15,NA,NA,NA,NA,NA,NA,"VisitTo"
+559,2013-11-16,NA,NA,NA,NA,NA,NA,"VisitTo"
+560,2013-11-17,24.65,96.3,2731,98,151,241,""
+561,2013-11-18,23.62,NA,2213,171,58,249,""
+562,2013-11-19,27.75,NA,2472,175,39,351,""
+563,2013-11-20,36.34,95.2,2517,159,57,339,""
+564,2013-11-21,NA,94.8,NA,NA,NA,NA,"VisitTo"
+565,2013-11-22,24.31,94.6,2050,164,37,260,""
+566,2013-11-23,NA,94.4,NA,NA,NA,NA,"Alone"
+567,2013-11-24,25.14,NA,2264,155,65,263,""
+568,2013-11-25,26.33,94.4,2565,175,75,291,""
+569,2013-11-26,28.81,94.5,2362,89,86,305,""
+570,2013-11-27,25.79,94.9,2263,179,61,237,""
+571,2013-11-28,34.78,93.9,2688,224,55,314,""
+572,2013-11-29,NA,94.4,NA,NA,NA,NA,"VisitTo"
+573,2013-11-30,NA,NA,NA,NA,NA,NA,"VisitTo"
+574,2013-12-01,NA,NA,NA,NA,NA,NA,"VisitTo"
+575,2013-12-02,NA,NA,NA,NA,NA,NA,"VisitTo"
+576,2013-12-03,NA,NA,NA,NA,NA,NA,"VisitOf"
+577,2013-12-04,NA,NA,NA,NA,NA,NA,"VisitOf"
+578,2013-12-05,NA,NA,NA,NA,NA,NA,"VisitOf"
+579,2013-12-06,NA,NA,NA,NA,NA,NA,"VisitOf"
+580,2013-12-07,23.24,96.2,2258,132,73,243,""
+581,2013-12-08,28.07,NA,2887,155,119,298,""
+582,2013-12-09,26.92,NA,2392,173,67,270,""
+583,2013-12-10,29.45,95.6,2176,161,52,259,""
+584,2013-12-11,27.84,95,2366,162,50,305,""
+585,2013-12-12,28.51,93.9,2072,169,51,229,""
+586,2013-12-13,25.4,94.1,2350,150,56,305,""
+587,2013-12-14,NA,NA,NA,NA,NA,NA,"VisitOf"
+588,2013-12-15,27.27,95.1,2414,167,80,254,""
+589,2013-12-16,23.19,95.4,2294,157,58,283,""
+590,2013-12-17,NA,NA,NA,NA,NA,NA,""
+591,2013-12-18,21.59,NA,2430,155,82,266,""
+592,2013-12-19,26.49,95,2185,163,54,260,""
+593,2013-12-20,20.75,NA,2995,50,141,387,"Holiday"
+594,2013-12-21,NA,NA,NA,NA,NA,NA,"Holiday"
+595,2013-12-22,NA,NA,NA,NA,NA,NA,"Holiday"
+596,2013-12-23,NA,NA,NA,NA,NA,NA,"Holiday"
+597,2013-12-24,NA,NA,NA,NA,NA,NA,"Holiday"
+598,2013-12-25,NA,NA,NA,NA,NA,NA,"Holiday"
+599,2013-12-26,NA,NA,NA,NA,NA,NA,"Holiday"
+600,2013-12-27,NA,NA,NA,NA,NA,NA,"Holiday"
+601,2013-12-28,NA,NA,NA,NA,NA,NA,"Holiday"
+602,2013-12-29,NA,NA,NA,NA,NA,NA,"Holiday"
+603,2013-12-30,NA,NA,NA,NA,NA,NA,"Holiday"
+604,2013-12-31,NA,NA,NA,NA,NA,NA,"Holiday"
+605,2014-01-01,NA,NA,NA,NA,NA,NA,"Holiday"
+606,2014-01-02,NA,NA,NA,NA,NA,NA,"Holiday"
+607,2014-01-03,NA,NA,NA,NA,NA,NA,"Holiday"
+608,2014-01-04,NA,NA,NA,NA,NA,NA,"Holiday"
+609,2014-01-05,20.75,96,2995,50,141,387,""
+610,2014-01-06,NA,NA,NA,NA,NA,NA,""
+611,2014-01-07,26.03,NA,2660,158,79,310,""
+612,2014-01-08,30.22,NA,2284,164,60,242,""
+613,2014-01-09,23.39,NA,2291,215,67,199,""
+614,2014-01-10,25.8,96.3,2431,149,54,326,""
+615,2014-01-11,26.13,95.8,2209,178,71,210,""
+616,2014-01-12,NA,95.7,NA,NA,NA,NA,"Restaurant"
+617,2014-01-13,35.23,97.5,2613,154,61,352,""
+618,2014-01-14,22.57,NA,2325,166,81,223,""
+619,2014-01-15,21.34,NA,2187,142,89,217,""
+620,2014-01-16,27.86,95.9,2129,152,47,259,""
+621,2014-01-17,23.19,95.9,2312,189,73,227,""
+622,2014-01-18,NA,NA,NA,NA,NA,NA,""
+623,2014-01-19,NA,NA,NA,NA,NA,NA,""
+624,2014-01-20,26.81,NA,2362,171,68,269,""
+625,2014-01-21,29.25,NA,2217,180,47,272,""
+626,2014-01-22,27.13,NA,2258,154,42,315,""
+627,2014-01-23,NA,95.3,NA,NA,NA,NA,"VisitOfAndVisitTo"
+628,2014-01-24,23.04,96.3,2325,113,88,245,""
+629,2014-01-25,NA,96.6,NA,NA,NA,NA,"Restaurant"
+630,2014-01-26,20.11,96.1,2262,168,81,210,""
+631,2014-01-27,29.39,96.2,2311,143,52,303,""
+632,2014-01-28,21.91,95.4,2171,155,54,279,""
+633,2014-01-29,26.06,95.4,2091,187,52,211,""
+634,2014-01-30,26.27,NA,2182,168,62,248,""
+635,2014-01-31,NA,95.6,NA,NA,NA,NA,"VisitOfFamily"
+636,2014-02-01,NA,NA,NA,NA,NA,NA,"VisitOfFamily"
+637,2014-02-02,NA,NA,NA,NA,NA,NA,"VisitOfFamily"
+638,2014-02-03,26.11,NA,2108,155,45,252,""
+639,2014-02-04,28.67,NA,2491,143,88,259,""
+640,2014-02-05,17.7,95.9,2006,151,52,219,""
+641,2014-02-06,23.11,95.1,2018,155,73,178,""
+642,2014-02-07,NA,NA,NA,NA,NA,NA,"Funeral"
+643,2014-02-08,NA,94.7,NA,NA,NA,NA,"VisitOf"
+644,2014-02-09,NA,95.2,NA,NA,NA,NA,"VisitOf"
+645,2014-02-10,27.31,96.7,2105,121,53,303,""
+646,2014-02-11,19.71,NA,2255,163,53,286,""
+647,2014-02-12,25.96,95,2068,169,51,247,""
+648,2014-02-13,26.82,94.7,1990,172,43,214,""
+649,2014-02-14,24.06,NA,2145,145,86,208,""
+650,2014-02-15,NA,94.4,NA,NA,NA,NA,"Restaurant"
+651,2014-02-16,NA,95.2,NA,NA,NA,NA,"VisitOfFamily"
+652,2014-02-17,NA,NA,2145,139,54,271,""
+653,2014-02-18,20.23,95,2040,166,55,210,""
+654,2014-02-19,21.51,NA,2589,153,117,243,""
+655,2014-02-20,NA,95.1,NA,NA,NA,NA,"VisitTo"
+656,2014-02-21,23.83,96.2,2182,136,73,235,""
+657,2014-02-22,24.06,NA,2212,116,64,286,""
+658,2014-02-23,22.26,96.5,2140,130,56,243,""
+659,2014-02-24,NA,95,NA,NA,NA,NA,""
+660,2014-02-25,24.34,95.6,2258,167,55,267,""
+661,2014-02-26,NA,NA,NA,NA,NA,NA,"Holiday"
+662,2014-02-27,NA,NA,NA,NA,NA,NA,"Holiday"
+663,2014-02-28,NA,NA,NA,NA,NA,NA,"Holiday"
+664,2014-03-01,NA,NA,NA,NA,NA,NA,"Holiday"
+665,2014-03-02,NA,NA,NA,NA,NA,NA,"Holiday"
+666,2014-03-03,24.92,96.5,1903,134,65,204,""
+667,2014-03-04,39.11,96.9,2740,166,57,385,""
+668,2014-03-05,21.19,96.2,2220,147,75,231,""
+669,2014-03-06,25.12,NA,2196,167,35,279,""
+670,2014-03-07,25.26,NA,2199,124,36,331,""
+671,2014-03-08,NA,95.1,NA,NA,NA,NA,"VisitOfFamily"
+672,2014-03-09,NA,NA,NA,NA,NA,NA,"VisitOfFamily"
+673,2014-03-10,NA,NA,NA,NA,NA,NA,"VisitOfFamily"
+674,2014-03-11,NA,NA,NA,NA,NA,NA,"VisitOfFamily"
+675,2014-03-12,NA,NA,NA,NA,NA,NA,"VisitOfFamily"
+676,2014-03-13,17.82,96.6,2032,153,67,193,""
+677,2014-03-14,23.63,96.1,2645,140,128,230,""
+678,2014-03-15,17.98,NA,2613,114,64,394,""
+679,2014-03-16,NA,95,NA,NA,NA,NA,"VisitTo"
+680,2014-03-17,NA,NA,NA,NA,NA,NA,"VisitTo"
+681,2014-03-18,NA,NA,NA,NA,NA,NA,"VisitTo"
+682,2014-03-19,NA,NA,NA,NA,NA,NA,"VisitTo"
+683,2014-03-20,16.51,NA,1519,97,29,215,""
+684,2014-03-21,23.19,96.5,2658,86,140,255,""
+685,2014-03-22,NA,NA,NA,NA,NA,NA,"VisitOf"
+686,2014-03-23,NA,NA,NA,NA,NA,NA,"VisitOf"
+687,2014-03-24,NA,NA,NA,NA,NA,NA,"VisitOf"
+688,2014-03-25,NA,NA,NA,NA,NA,NA,"VisitOf"
+689,2014-03-26,NA,NA,NA,NA,NA,NA,"VisitOf"
+690,2014-03-27,23.53,NA,1914,131,49,230,""
+691,2014-03-28,21.82,96.6,2146,138,57,260,""
+692,2014-03-29,NA,NA,NA,NA,NA,NA,"VisitOfFamily"
+693,2014-03-30,NA,96.6,NA,NA,NA,NA,"VisitOfFamily"
+694,2014-03-31,17.15,NA,2048,132,58,253,""
+695,2014-04-01,31,96,2083,167,63,206,""
+696,2014-04-02,27.09,95.5,2076,204,38,219,""
+697,2014-04-03,27.79,94.9,1986,196,48,181,""
+698,2014-04-04,29.01,94.8,2024,158,29,273,""
+699,2014-04-05,22.78,94.7,2031,153,52,230,""
+700,2014-04-06,23.94,NA,2041,165,37,248,""
+701,2014-04-07,29.82,95.6,2164,148,47,284,""
+702,2014-04-08,27.76,94.7,1956,187,56,172,""
+703,2014-04-09,33.89,93.8,2006,130,34,282,""
+704,2014-04-10,26.86,93.9,2106,158,66,215,""
+705,2014-04-11,30.84,94,2138,157,47,267,""
+706,2014-04-12,24.82,93.5,1983,141,55,222,""
+707,2014-04-13,22.07,93.7,2047,146,67,202,""
+708,2014-04-14,29.06,NA,2281,183,32,297,""
+709,2014-04-15,26.11,92.7,2360,151,72,232,""
+710,2014-04-16,34,93.8,2065,177,36,229,""
+711,2014-04-17,31.01,93.6,2074,170,25,287,""
+712,2014-04-18,26.32,93.4,2199,212,47,214,""
+713,2014-04-19,NA,93.2,NA,NA,NA,NA,"GetTogether"
+714,2014-04-20,NA,NA,NA,NA,NA,NA,"GetTogether"
+715,2014-04-21,NA,NA,NA,NA,NA,NA,"GetTogether"
+716,2014-04-22,NA,94,NA,NA,NA,NA,"Restaurant"
+717,2014-04-23,16.44,95.4,2159,152,86,190,""
+718,2014-04-24,27.02,94.4,2226,152,46,275,""
+719,2014-04-25,24.53,94.3,2235,143,73,245,""
+720,2014-04-26,NA,NA,NA,NA,NA,NA,"Restaurant"
+721,2014-04-27,NA,94,NA,NA,NA,NA,"VisitOf"
+722,2014-04-28,24.03,94.6,2209,162,91,176,""
+723,2014-04-29,NA,93.7,NA,NA,NA,NA,"VisitTo"
+724,2014-04-30,NA,NA,NA,NA,NA,NA,"VisitOf"
+725,2014-05-01,NA,95.5,NA,NA,NA,NA,"VisitOf"
+726,2014-05-02,NA,95.4,NA,NA,NA,NA,"VisitOf"
+727,2014-05-03,26.24,95.5,2174,151,87,189,""
+728,2014-05-04,NA,95.4,NA,NA,NA,NA,"VisitTo"
+729,2014-05-05,24.36,95.1,2087,194,34,244,""
+730,2014-05-06,28.28,95.1,2191,158,62,240,""
+731,2014-05-07,17.6,94.4,2072,135,62,231,""
+732,2014-05-08,20.78,94.2,2095,134,59,247,""
+733,2014-05-09,NA,93.6,NA,NA,NA,NA,"Restaurant"
+734,2014-05-10,24.02,94.4,1843,158,28,243,""
+735,2014-05-11,20.86,93.8,1853,166,45,187,""
+736,2014-05-12,26.64,93.5,2227,168,57,251,""
+737,2014-05-13,28.5,93.1,2659,194,102,232,""
+738,2014-05-14,NA,93.7,NA,NA,NA,NA,"GetTogether"
+739,2014-05-15,NA,NA,NA,NA,NA,NA,"GetTogether"
+740,2014-05-16,21.96,NA,2790,121,109,293,""
+741,2014-05-17,30.78,95.2,2530,140,86,305,""
+742,2014-05-18,NA,95.1,NA,NA,NA,NA,"VisitOfFamily"
+743,2014-05-19,26.28,NA,2137,168,41,264,""
+744,2014-05-20,25.18,NA,2042,158,48,233,""
+745,2014-05-21,28.65,94.7,2219,188,79,185,""
+746,2014-05-22,26.91,93.5,1814,148,59,170,""
+747,2014-05-23,21.01,93.8,2292,170,64,252,""
+748,2014-05-24,NA,92.8,NA,NA,NA,NA,"VisitOfFamily"
+749,2014-05-25,NA,93.5,NA,NA,NA,NA,"VisitOfFamily"
+750,2014-05-26,26.31,93.9,2186,175,82,179,""
+751,2014-05-27,23.7,NA,2181,137,79,222,""
+752,2014-05-28,NA,92.9,NA,NA,NA,NA,"Holiday"
+753,2014-05-29,NA,NA,NA,NA,NA,NA,"Holiday"
+754,2014-05-30,NA,NA,NA,NA,NA,NA,"Holiday"
+755,2014-05-31,NA,NA,NA,NA,NA,NA,"Holiday"
+756,2014-06-01,27.36,94.6,2268,162,77,225,""
+757,2014-06-02,NA,95,NA,NA,NA,NA,"Lazy"
+758,2014-06-03,19.91,NA,1950,155,71,162,""
+759,2014-06-04,21.33,94,2073,206,63,166,""
+760,2014-06-05,25.72,94.4,1846,168,42,182,""
+761,2014-06-06,30.93,94.4,2230,161,60,256,""
+762,2014-06-07,NA,94,NA,NA,NA,NA,"VisitOfFamily"
+763,2014-06-08,NA,94.1,NA,NA,NA,NA,"VisitOfFamily"
+764,2014-06-09,NA,NA,NA,NA,NA,NA,"VisitOfFamily"
+765,2014-06-10,27.32,NA,1956,143,67,191,""
+766,2014-06-11,19.61,94.3,1904,77,87,242,""
+767,2014-06-12,NA,93.5,NA,NA,NA,NA,"VisitOf"
+768,2014-06-13,NA,93.5,NA,NA,NA,NA,"VisitOf"
+769,2014-06-14,NA,NA,NA,NA,NA,NA,"VisitOf"
+770,2014-06-15,NA,NA,NA,NA,NA,NA,"VisitOf"
+771,2014-06-16,18.88,94.6,1741,147,44,185,""
+772,2014-06-17,25.08,94.4,3246,178,144,363,""
+773,2014-06-18,22,NA,2625,145,68,350,""
+774,2014-06-19,NA,NA,NA,NA,NA,NA,"VisitOf"
+775,2014-06-20,17.8,NA,2011,151,60,214,""
+776,2014-06-21,24.1,94.1,2362,112,83,287,""
+777,2014-06-22,NA,94,NA,NA,NA,NA,""
+778,2014-06-23,26.79,94.7,1667,143,30,205,""
+779,2014-06-24,NA,NA,NA,NA,NA,NA,"VisitOf"
+780,2014-06-25,NA,NA,NA,NA,NA,NA,"VisitOf"
+781,2014-06-26,NA,NA,NA,NA,NA,NA,"VisitOf"
+782,2014-06-27,NA,95.4,NA,NA,NA,NA,"VisitOf"
+783,2014-06-28,NA,NA,NA,NA,NA,NA,"VisitOf"
+784,2014-06-29,NA,NA,NA,NA,NA,NA,"VisitOf"
+785,2014-06-30,25.29,95.4,2299,181,56,263,""
+786,2014-07-01,30.79,94.7,1912,149,39,242,""
+787,2014-07-02,27.37,94.3,2065,190,57,196,""
+788,2014-07-03,34.66,94,2417,198,55,277,""
+789,2014-07-04,27.98,NA,2219,139,91,241,""
+790,2014-07-05,NA,NA,NA,NA,NA,NA,"Holiday"
+791,2014-07-06,NA,NA,NA,NA,NA,NA,"Holiday"
+792,2014-07-07,NA,NA,NA,NA,NA,NA,"Holiday"
+793,2014-07-08,NA,NA,NA,NA,NA,NA,"Holiday"
+794,2014-07-09,NA,NA,NA,NA,NA,NA,"Holiday"
+795,2014-07-10,NA,NA,NA,NA,NA,NA,"Holiday"
+796,2014-07-11,NA,NA,NA,NA,NA,NA,"Holiday"
+797,2014-07-12,NA,NA,NA,NA,NA,NA,"Holiday"
+798,2014-07-13,NA,NA,NA,NA,NA,NA,"Holiday"
+799,2014-07-14,NA,NA,NA,NA,NA,NA,"Holiday"
+800,2014-07-15,NA,NA,NA,NA,NA,NA,"Holiday"
+801,2014-07-16,NA,NA,NA,NA,NA,NA,"Holiday"
+802,2014-07-17,NA,NA,NA,NA,NA,NA,"Holiday"
+803,2014-07-18,NA,NA,NA,NA,NA,NA,"Holiday"
+804,2014-07-19,NA,NA,NA,NA,NA,NA,"Holiday"
+805,2014-07-20,NA,98.2,NA,NA,NA,NA,"VisitTo"
+806,2014-07-21,NA,99,NA,NA,NA,NA,""
+807,2014-07-22,23.11,98.6,1949,106,56,253,""
+808,2014-07-23,28.77,97.5,2355,193,78,223,""
+809,2014-07-24,24.75,NA,2030,163,45,248,""
+810,2014-07-25,26.54,97,2081,148,70,223,""
+811,2014-07-26,NA,96.6,NA,NA,NA,NA,"LessThan2000Calories"
+812,2014-07-27,29.99,NA,2374,203,81,203,""
+813,2014-07-28,22.09,96.4,2046,168,47,235,""
+814,2014-07-29,23.53,96.3,2122,139,29,325,""
+815,2014-07-30,31.74,95.3,1895,165,47,210,""
+816,2014-07-31,29.49,NA,2048,156,49,248,""
+817,2014-08-01,29.74,95.2,2308,188,66,239,""
+818,2014-08-02,25.21,95.2,1828,166,42,205,""
+819,2014-08-03,28.02,95,2139,131,62,260,""
+820,2014-08-04,21.33,94.5,1942,141,39,254,""
+821,2014-08-05,24.54,94.8,1939,175,48,190,""
+822,2014-08-06,NA,95.2,NA,NA,NA,NA,"GetTogether"
+823,2014-08-07,NA,NA,NA,NA,NA,NA,"GetTogether"
+824,2014-08-08,NA,NA,NA,NA,NA,NA,"GetTogether"
+825,2014-08-09,NA,NA,NA,NA,NA,NA,"GetTogether"
+826,2014-08-10,NA,NA,NA,NA,NA,NA,"GetTogether"
+827,2014-08-11,NA,NA,NA,NA,NA,NA,"GetTogether"
+828,2014-08-12,NA,96.6,NA,NA,NA,NA,"GetTogether"
+829,2014-08-13,NA,96.7,NA,NA,NA,NA,"Alone"
+830,2014-08-14,NA,96.8,NA,NA,NA,NA,"VisitTo"
+831,2014-08-15,NA,97.2,NA,NA,NA,NA,"Funeral"
+832,2014-08-16,23.26,97.3,1860,133,48,215,""
+833,2014-08-17,25.89,96.6,2094,158,58,237,""
+834,2014-08-18,20.55,95.9,2190,166,85,189,""
+835,2014-08-19,25.6,NA,2066,143,48,259,""
+836,2014-08-20,26.07,94.5,2098,152,33,294,""
+837,2014-08-21,32.48,NA,2024,167,38,254,""
+838,2014-08-22,30.38,95.2,2029,159,66,196,""
+839,2014-08-23,29.5,95.2,2238,141,28,345,""
+840,2014-08-24,NA,94.3,NA,NA,NA,NA,"Restaurant"
+841,2014-08-25,19.57,95.5,2052,180,52,210,""
+842,2014-08-26,25.95,94.6,2046,151,62,219,""
+843,2014-08-27,25.68,95.6,2275,178,73,227,""
+844,2014-08-28,26.69,NA,2434,139,59,332,""
+845,2014-08-29,29.42,95.3,2521,185,80,254,""
+846,2014-08-30,NA,95.2,NA,NA,NA,NA,"Restaurant"
+847,2014-08-31,16.73,NA,1978,95,75,230,""
+848,2014-09-01,NA,NA,2311,145,78,254,""
+849,2014-09-02,NA,95.1,2240,172,37,299,""
+850,2014-09-03,NA,94.2,2005,147,57,221,""
+851,2014-09-04,NA,95.1,NA,NA,NA,NA,""
+852,2014-09-05,NA,95.2,2440,139,51,348,""
+853,2014-09-06,NA,95.2,1931,126,65,204,""
+854,2014-09-07,NA,95.3,2347,144,74,270,""
+855,2014-09-08,NA,94.4,1972,172,61,180,""
+856,2014-09-09,NA,93.8,2152,159,33,302,""
+857,2014-09-10,NA,NA,1939,191,47,180,""
+858,2014-09-11,NA,92.9,2080,183,62,195,""
+859,2014-09-12,NA,NA,2445,188,78,239,""
+860,2014-09-13,NA,93.9,NA,NA,NA,NA,"Restaurant"
+861,2014-09-14,NA,NA,2013,133,74,194,""
+862,2014-09-15,NA,94.1,NA,NA,NA,NA,"VisitTo"
+863,2014-09-16,NA,NA,NA,NA,NA,NA,"Other"
+864,2014-09-17,NA,94.4,1876,123,65,191,""
+865,2014-09-18,NA,94.8,2091,154,59,233,""
+866,2014-09-19,NA,94.5,2114,127,65,254,""
+867,2014-09-20,NA,94.8,1862,111,44,253,""
+868,2014-09-21,NA,95,1887,156,43,226,""
+869,2014-09-22,NA,93.4,2062,144,44,258,""
+870,2014-09-23,NA,94,2071,139,59,242,""
+871,2014-09-24,NA,93.1,1691,138,44,178,""
+872,2014-09-25,NA,NA,NA,NA,NA,NA,"OnTravel"
+873,2014-09-26,NA,NA,NA,NA,NA,NA,"VisitTo"
+874,2014-09-27,NA,94.6,2178,132,72,242,""
+875,2014-09-28,NA,94.3,2376,121,108,232,""
+876,2014-09-29,NA,93.9,2185,63,74,264,""
+877,2014-09-30,NA,NA,2094,147,52,250,""
+878,2014-10-01,NA,NA,NA,NA,NA,NA,"VisitOfFamily"
+879,2014-10-02,NA,NA,NA,NA,NA,NA,"VisitOfFamily"
+880,2014-10-03,NA,96.1,2602,131,82,362,""
+881,2014-10-04,NA,NA,NA,NA,NA,NA,"VisitOf"
+882,2014-10-05,NA,NA,NA,NA,NA,NA,"VisitOf"
+883,2014-10-06,NA,96,1901,103,42,273,""
+884,2014-10-07,NA,95,2642,151,101,284,""
+885,2014-10-08,NA,NA,2286,108,94,249,""
+886,2014-10-09,NA,94.3,2589,144,101,267,""
+887,2014-10-10,NA,95,NA,NA,NA,NA,"Other"
+888,2014-10-11,NA,NA,NA,NA,NA,NA,"VisitOf"
+889,2014-10-12,NA,NA,NA,NA,NA,NA,"VisitOf"
+890,2014-10-13,NA,NA,NA,NA,NA,NA,"VisitTo"
+891,2014-10-14,NA,NA,NA,NA,NA,NA,"VisitTo"
+892,2014-10-15,NA,NA,NA,NA,NA,NA,"VisitOfFamily"
+893,2014-10-16,NA,NA,NA,NA,NA,NA,"VisitOfFamily"
+894,2014-10-17,NA,NA,NA,NA,NA,NA,"VisitOfFamily"
+895,2014-10-18,NA,NA,NA,NA,NA,NA,"Holiday"
+896,2014-10-19,NA,NA,NA,NA,NA,NA,"Holiday"
+897,2014-10-20,NA,97.6,2156,120,72,248,""
+898,2014-10-21,NA,97,NA,NA,NA,NA,""
+899,2014-10-22,NA,NA,NA,NA,NA,NA,""
+900,2014-10-23,NA,NA,2240,186,52,204,""
+901,2014-10-24,NA,NA,NA,NA,NA,NA,"Ill"
+902,2014-10-25,NA,NA,NA,NA,NA,NA,"Ill"
+903,2014-10-26,NA,NA,NA,NA,NA,NA,"Ill"
+904,2014-10-27,NA,NA,NA,NA,NA,NA,"Ill"
+905,2014-10-28,NA,NA,NA,NA,NA,NA,"Ill"
+906,2014-10-29,NA,NA,NA,NA,NA,NA,"Ill"
+907,2014-10-30,NA,NA,NA,NA,NA,NA,"Ill"
+908,2014-10-31,NA,NA,NA,NA,NA,NA,"VisitTo"
+909,2014-11-01,NA,NA,NA,NA,NA,NA,"VisitTo"
+910,2014-11-02,NA,95.5,2229,102,70,290,""
+911,2014-11-03,NA,NA,2267,125,74,267,""
+912,2014-11-04,NA,NA,NA,NA,NA,NA,"VisitTo"
+913,2014-11-05,NA,NA,NA,NA,NA,NA,"VisitTo"
+914,2014-11-06,NA,NA,NA,NA,NA,NA,"Lazy"
+915,2014-11-07,NA,NA,NA,NA,NA,NA,"Lazy"
+916,2014-11-08,NA,NA,NA,NA,NA,NA,"Lazy"
+917,2014-11-09,NA,95.7,NA,NA,NA,NA,"VisitOfFamily"
+918,2014-11-10,NA,NA,NA,NA,NA,NA,"VisitOfFamily"
+919,2014-11-11,NA,NA,NA,NA,NA,NA,"VisitOfFamily"
+920,2014-11-12,NA,96.9,NA,NA,NA,NA,""
+921,2014-11-13,NA,96.1,2298,161,84,219,""
+922,2014-11-14,NA,96.3,3141,177,133,303,""
+923,2014-11-15,NA,95,1968,110,32,302,""
+924,2014-11-16,NA,NA,2085,125,40,297,""
+925,2014-11-17,NA,94.9,2131,151,70,219,""
+926,2014-11-18,NA,NA,NA,NA,NA,NA,"VisitOf"
+927,2014-11-19,NA,94.9,2094,149,60,235,""
+928,2014-11-20,NA,94.3,2068,166,60,210,""
+929,2014-11-21,NA,94.9,2450,176,85,242,""
+930,2014-11-22,NA,94.3,NA,NA,NA,NA,"Restaurant"
+931,2014-11-23,NA,NA,NA,NA,NA,NA,"VisitTo"
+932,2014-11-24,NA,95.6,NA,NA,NA,NA,"Other"
+933,2014-11-25,NA,96.3,2386,159,95,218,""
+934,2014-11-26,NA,94.6,2188,157,72,220,""
+935,2014-11-27,NA,94.5,2250,112,107,207,""
+936,2014-11-28,NA,94.9,2567,110,76,353,""
+937,2014-11-29,NA,95.4,2163,180,57,236,""
+938,2014-11-30,NA,NA,NA,NA,NA,NA,"VisitOf"
+939,2014-12-01,NA,95.6,1795,135,47,207,""
+940,2014-12-02,NA,95.4,NA,NA,NA,NA,"VisitOf"
+941,2014-12-03,NA,NA,NA,NA,NA,NA,"VisitOf"
+942,2014-12-04,NA,NA,2364,142,60,310,""
+943,2014-12-05,NA,95.4,NA,NA,NA,NA,""
+944,2014-12-06,NA,94.9,NA,NA,NA,NA,""
+945,2014-12-07,NA,NA,NA,NA,NA,NA,""
+946,2014-12-08,NA,NA,NA,NA,NA,NA,""
+947,2014-12-09,NA,NA,NA,NA,NA,NA,""
+948,2014-12-10,NA,NA,NA,NA,NA,NA,""
+949,2014-12-11,NA,NA,NA,NA,NA,NA,""
+950,2014-12-12,NA,NA,NA,NA,NA,NA,""
+951,2014-12-13,NA,NA,NA,NA,NA,NA,""
+952,2014-12-14,NA,NA,NA,NA,NA,NA,""
+953,2014-12-15,NA,NA,NA,NA,NA,NA,""
+954,2014-12-16,NA,NA,NA,NA,NA,NA,""
+955,2014-12-17,NA,NA,NA,NA,NA,NA,""
+956,2014-12-18,NA,NA,NA,NA,NA,NA,""
+957,2014-12-19,NA,NA,NA,NA,NA,NA,""
+958,2014-12-20,NA,NA,NA,NA,NA,NA,""
+959,2014-12-21,NA,NA,NA,NA,NA,NA,""
+960,2014-12-22,NA,NA,NA,NA,NA,NA,""
+961,2014-12-23,NA,NA,NA,NA,NA,NA,""
+962,2014-12-24,NA,NA,NA,NA,NA,NA,""
+963,2014-12-25,NA,NA,NA,NA,NA,NA,""
+964,2014-12-26,NA,NA,NA,NA,NA,NA,""
+965,2014-12-27,NA,NA,NA,NA,NA,NA,""
+966,2014-12-28,NA,NA,NA,NA,NA,NA,""
+967,2014-12-29,NA,NA,NA,NA,NA,NA,""
+968,2014-12-30,NA,NA,NA,NA,NA,NA,""
+969,2014-12-31,NA,NA,NA,NA,NA,NA,""
+970,2015-01-01,NA,NA,NA,NA,NA,NA,""
+971,2015-01-02,NA,NA,NA,NA,NA,NA,""
+972,2015-01-03,NA,NA,NA,NA,NA,NA,""
+973,2015-01-04,NA,NA,NA,NA,NA,NA,""
+974,2015-01-05,NA,NA,NA,NA,NA,NA,""
+975,2015-01-06,NA,NA,NA,NA,NA,NA,""
+976,2015-01-07,NA,NA,NA,NA,NA,NA,""
+977,2015-01-08,NA,NA,NA,NA,NA,NA,""
+978,2015-01-09,NA,NA,NA,NA,NA,NA,""
+979,2015-01-10,NA,NA,NA,NA,NA,NA,""
+980,2015-01-11,NA,NA,NA,NA,NA,NA,""
+981,2015-01-12,NA,NA,NA,NA,NA,NA,""
+982,2015-01-13,NA,NA,NA,NA,NA,NA,""
+983,2015-01-14,NA,NA,NA,NA,NA,NA,""
+984,2015-01-15,NA,NA,NA,NA,NA,NA,""
+985,2015-01-16,NA,NA,NA,NA,NA,NA,""
+986,2015-01-17,NA,NA,NA,NA,NA,NA,""
+987,2015-01-18,NA,NA,NA,NA,NA,NA,""
+988,2015-01-19,NA,NA,NA,NA,NA,NA,""
+989,2015-01-20,NA,NA,NA,NA,NA,NA,""
+990,2015-01-21,NA,NA,NA,NA,NA,NA,""
+991,2015-01-22,NA,NA,NA,NA,NA,NA,""
+992,2015-01-23,NA,NA,NA,NA,NA,NA,""
+993,2015-01-24,NA,NA,NA,NA,NA,NA,""
+994,2015-01-25,NA,NA,NA,NA,NA,NA,""
+995,2015-01-26,NA,NA,NA,NA,NA,NA,""
+996,2015-01-27,NA,NA,NA,NA,NA,NA,""
+997,2015-01-28,NA,NA,NA,NA,NA,NA,""
+998,2015-01-29,NA,NA,NA,NA,NA,NA,""
+999,2015-01-30,NA,NA,NA,NA,NA,NA,""
+1000,2015-01-31,NA,NA,NA,NA,NA,NA,""
+1001,2015-02-01,NA,NA,NA,NA,NA,NA,""
+1002,2015-02-02,NA,NA,NA,NA,NA,NA,""
+1003,2015-02-03,NA,NA,NA,NA,NA,NA,""
+1004,2015-02-04,NA,NA,NA,NA,NA,NA,""
+1005,2015-02-05,NA,NA,NA,NA,NA,NA,""
+1006,2015-02-06,NA,NA,NA,NA,NA,NA,""
+1007,2015-02-07,NA,NA,NA,NA,NA,NA,""
+1008,2015-02-08,NA,NA,NA,NA,NA,NA,""
+1009,2015-02-09,NA,NA,NA,NA,NA,NA,""
+1010,2015-02-10,NA,NA,NA,NA,NA,NA,""
+1011,2015-02-11,NA,NA,NA,NA,NA,NA,""
+1012,2015-02-12,NA,NA,NA,NA,NA,NA,""
+1013,2015-02-13,NA,NA,NA,NA,NA,NA,""
+1014,2015-02-14,NA,NA,NA,NA,NA,NA,""
+1015,2015-02-15,NA,NA,NA,NA,NA,NA,""
+1016,2015-02-16,NA,NA,NA,NA,NA,NA,""
+1017,2015-02-17,NA,NA,NA,NA,NA,NA,""
+1018,2015-02-18,NA,NA,NA,NA,NA,NA,""
+1019,2015-02-19,NA,NA,NA,NA,NA,NA,""
+1020,2015-02-20,NA,NA,NA,NA,NA,NA,""
+1021,2015-02-21,NA,NA,NA,NA,NA,NA,""
+1022,2015-02-22,NA,NA,NA,NA,NA,NA,""
+1023,2015-02-23,NA,NA,NA,NA,NA,NA,""
+1024,2015-02-24,NA,NA,NA,NA,NA,NA,""
+1025,2015-02-25,NA,NA,NA,NA,NA,NA,""
+1026,2015-02-26,NA,NA,NA,NA,NA,NA,""
+1027,2015-02-27,NA,NA,NA,NA,NA,NA,""
+1028,2015-02-28,NA,NA,NA,NA,NA,NA,""
+1029,2015-03-01,NA,NA,NA,NA,NA,NA,""
+1030,2015-03-02,NA,NA,NA,NA,NA,NA,""
+1031,2015-03-03,NA,NA,NA,NA,NA,NA,""
+1032,2015-03-04,NA,NA,NA,NA,NA,NA,""
+1033,2015-03-05,NA,NA,NA,NA,NA,NA,""
+1034,2015-03-06,NA,NA,NA,NA,NA,NA,""
+1035,2015-03-07,NA,NA,NA,NA,NA,NA,""
+1036,2015-03-08,NA,NA,NA,NA,NA,NA,""
+1037,2015-03-09,NA,NA,NA,NA,NA,NA,""
+1038,2015-03-10,NA,NA,NA,NA,NA,NA,""
+1039,2015-03-11,NA,NA,NA,NA,NA,NA,""
+1040,2015-03-12,NA,NA,NA,NA,NA,NA,""
+1041,2015-03-13,NA,NA,NA,NA,NA,NA,""
+1042,2015-03-14,NA,NA,NA,NA,NA,NA,""
+1043,2015-03-15,NA,NA,NA,NA,NA,NA,""
+1044,2015-03-16,NA,NA,NA,NA,NA,NA,""
+1045,2015-03-17,NA,NA,NA,NA,NA,NA,""
+1046,2015-03-18,NA,NA,NA,NA,NA,NA,""
+1047,2015-03-19,NA,NA,NA,NA,NA,NA,""
+1048,2015-03-20,NA,NA,1879,125,49,222,""
+1049,2015-03-21,NA,NA,NA,NA,NA,NA,""
+1050,2015-03-22,NA,NA,1816,143,62,173,""
+1051,2015-03-23,NA,98.2,NA,NA,NA,NA,"Restaurant"
+1052,2015-03-24,NA,98.3,1961,140,28,280,""
+1053,2015-03-25,NA,97.8,2040,110,54,274,""
+1054,2015-03-26,NA,97.4,2241,155,48,292,""
+1055,2015-03-27,NA,97.7,NA,NA,NA,NA,"VisitOf"
+1056,2015-03-28,NA,NA,NA,NA,NA,NA,"VisitOfFamily"
+1057,2015-03-29,NA,NA,NA,NA,NA,NA,"VisitTo"
+1058,2015-03-30,NA,97.9,2013,104,60,260,""
+1059,2015-03-31,NA,97.8,NA,NA,NA,NA,"VisitOf"
+1060,2015-04-01,NA,97.7,2162,141,84,207,""
+1061,2015-04-02,NA,97.4,2329,108,55,349,""
+1062,2015-04-03,NA,96.5,1814,104,56,210,""