diff --git a/mb/Uebung1.pdf b/mb/Uebung1.pdf index 7f33645..99a6421 100644 --- a/mb/Uebung1.pdf +++ b/mb/Uebung1.pdf Binary files differ diff --git a/mb/Uebung1.tex b/mb/Uebung1.tex index 04960ec..8526c57 100644 --- a/mb/Uebung1.tex +++ b/mb/Uebung1.tex @@ -80,40 +80,35 @@ \textit{Jan-Peter Hohloch}\\ \textit{Maximus Mutschler} }{SS 15}{4} \vspace{1cm} - + \Aufgabe{}{7} \begin{enumerate}[(a)] - \item $ \mathbf{R_z(\alpha)}= % %\begin{pmatrix} - % &&&\\ - % &&&\\ - % &&&\\ - % &&&\\ - % \end{pmatrix} - \begin{pmatrix} - cos(\alpha)&-sin(\alpha)&0&0\\ - sin(\alpha)&cos(\alpha)&0&0\\ - 0&0&1&0\\ - 0&0&0&1 - \end{pmatrix}\\ - \\ - \mathbf{Trans}= - \begin{pmatrix} - 1&0&0&t_x\\ - 0&1&0&t_y\\ - 0&0&1&t_z\\ - 0&0&0&1 - \end{pmatrix}$ + \item $ \mathbf{R_z(\alpha)}= + \begin{pmatrix} + \cos(\alpha)&-\sin(\alpha)&0&0\\ + \sin(\alpha)&\cos(\alpha)&0&0\\ + 0&0&1&0\\ + 0&0&0&1 + \end{pmatrix}\\ + \\ + \mathbf{Trans}= + \begin{pmatrix} + 1&0&0&t_x\\ + 0&1&0&t_y\\ + 0&0&1&t_z\\ + 0&0&0&1 + \end{pmatrix}$ \item $\mathbf{T}_b= \mathbf{Trans}\cdot\mathbf{R_z(\alpha)}= \begin{pmatrix} - cos(\alpha)&-sin(\alpha)&0&t_x\\ - sin(\alpha)&cos(\alpha)&0&t_y\\ + \cos(\alpha)&-\sin(\alpha)&0&t_x\\ + \sin(\alpha)&\cos(\alpha)&0&t_y\\ 0&0&1&t_z\\ 0&0&0&1 \end{pmatrix}\\$ \item $\mathbf{T}_c= \mathbf{R_z(\alpha)\cdot\mathbf{Trans}}= \begin{pmatrix} - cos(\alpha)&-sin(\alpha)&0&0\\ - sin(\alpha)&cos(\alpha)&0&0\\ + \cos(\alpha)&-\sin(\alpha)&0&0\\ + \sin(\alpha)&\cos(\alpha)&0&0\\ 0&0&1&0\\ 0&0&0&1 \end{pmatrix}\cdot @@ -124,46 +119,53 @@ 0&0&0&1 \end{pmatrix} =\\ \begin{pmatrix} - cos(\alpha)&-sin(\alpha)&0&xcos(\alpha)-ysin(\alpha)\\ - sin(\alpha)&cos(\alpha)&0&ycos(\alpha)+xsin(\alpha)\\ - 0&0&1&z\\ + \cos(\alpha)&-\sin(\alpha)&0&t_x\cos(\alpha)-t_y\sin(\alpha)\\ + \sin(\alpha)&\cos(\alpha)&0&t_y\cos(\alpha)+t_x\sin(\alpha)\\ + 0&0&1&t_z\\ 0&0&0&1 \end{pmatrix} $ - \item $\mathbf{^BT_A} =\mathbf{Trans}(2,-1,1)\cdot\mathbf{R_x}(\frac{\pi}{2})\cdot\mathbf{R_z}(\frac{\pi}{2})\\= - \begin{pmatrix} - 1&0&0&2\\ - 0&1&0&-1\\ - 0&0&1&1\\ - 0&0&0&1 - \end{pmatrix} \cdot - \begin{pmatrix} - 1&0&0&0\\ - 0&0&-1&0\\ - 0&1&0&0\\ - 0&0&0&1\\ - \end{pmatrix} \cdot - \begin{pmatrix} - 0&-1&0&0\\ - 1&0&0&0\\ - 0&0&1&0\\ - 0&0&0&1\\ - \end{pmatrix}\\= - \begin{pmatrix} - 0&-1&0&2\\ - 0&0&-1&-1\\ - 1&0&0&1\\ - 0&0&0&1\\ - \end{pmatrix}\\$ - \item $ \mathbf{^AT_B} = + \item \begin{align*} + \mathbf{^BT_A} &=\mathbf{Trans}(2,-1,1)\cdot\mathbf{R_x}(90^\circ)\cdot\mathbf{R_y}(-90^\circ)\\ + &=\mathbf{Trans}(2,-1,1)\cdot \begin{pmatrix} + 1&0&0&0\\ + 0&0&-1&0\\ + 0&1&0&0\\ + 0&0&0&1 + \end{pmatrix}\cdot \begin{pmatrix} + 0&0&-1&0\\ + 0&1&0&0\\ + 1&0&0&0\\ + 0&0&0&1 + \end{pmatrix}\\ + &=\begin{pmatrix} + 1&0&0&2\\ + 0&1&0&-1\\ + 0&0&1&1\\ + 0&0&0&1 + \end{pmatrix}\cdot \begin{pmatrix} + 0&0&-1&0\\ + -1&0&0&0\\ + 0&1&0&0\\ + 0&0&0&1 + \end{pmatrix}\\ + &=\begin{pmatrix} + 0&-1&0&-1\\ + 0&0&1&-1\\ + -1&0&0&2\\ + 0&0&0&1 + \end{pmatrix} + \end{align*} + + \item $ \mathbf{^AT_B} = \begin{pmatrix} 0&0&1&-1\\ -1&0&0&2\\ 0&-1&0&-1\\ 0&0&0&1\\ \end{pmatrix}\\$ - + \end{enumerate} - + \Aufgabe{}{3} \begin{enumerate}[(a)] \item{Grid Based Representation}\\ @@ -175,27 +177,27 @@ - limited number of samples \item {Parameter Based Representation}\\ +p(x) directly determinable for each x \\- possible low accuracy due to approximation - + \end{enumerate} \Aufgabe{}{5} \begin{enumerate}[(a)] - + \item $ \mu_S =\begin{pmatrix} \frac{7}{3}\\ \frac{7}{3}\\ \frac{17}{6}\\ \end{pmatrix}\\$ -\item $\Sigma_S= +\item $\Sigma_S= \begin{pmatrix} \frac{8}{3}&\frac{16}{15}&\frac{22}{15}\\ \frac{16}{15}&\frac{34}{15}&\frac{7}{15}\\ \frac{22}{15}&\frac{7}{15}&\frac{89}{30}\\ \end{pmatrix}\\$ - + \item $ N(\mu,\Sigma) = \frac{1}{(2\pi)^(\frac{\pi}{2})|\Sigma|^(\frac{1}{2})}e^{(-\frac{1}{2}(x-\mu)^T\Sigma^{-1}(x-\mu) )}\\ - |\Sigma_S|= \frac{264}{25}\\ - \Sigma^{-1} = + |\Sigma_S|= \frac{264}{25}\\%TODO: wrong exponents? + \Sigma^{-1} = \begin{pmatrix} \frac{61}{99}&\frac{-31}{132}&\frac{-53}{198}\\ \frac{-31}{132}&\frac{6}{11}&\frac{1}{33}\\ @@ -213,26 +215,43 @@ 2\\3 \end{pmatrix}\\ \Sigma_y=\begin{pmatrix} -0,5&1\\2&0.5 +1&0.5\\0.5&2 \end{pmatrix}\\$ \item $\mu_y=\begin{pmatrix} 4\\-2 \end{pmatrix}\\ \Sigma_y=\begin{pmatrix} --2&4\\8&-2 +4&-2\\-2&8 \end{pmatrix}\\$ \item$ \mu_y=\begin{pmatrix} \frac{2}{\Delta t}\\\frac{1}{\Delta t} \end{pmatrix}\\ \Sigma_y=\begin{pmatrix} -\frac{1}{2\Delta t^2}&\frac{1}{\Delta t^2}\\ -\frac{2}{\Delta t^2}&\frac{1}{2\Delta t^2} +\frac{1}{(\Delta t)^2}&\frac{1}{2(\Delta t)^2}\\ +\frac{1}{2(\Delta t)^2}&\frac{2}{(\Delta t)^2} \end{pmatrix}\\$ -\item $\mu_y=?\\ -\Sigma_y=?$ +\item $\mu_y=2\mu_x+3\mu_z=\begin{pmatrix} + 4\\2 +\end{pmatrix}+3\mu_z\\ +\Sigma_y=\begin{pmatrix} + 2&0\\0&2 +\end{pmatrix}\begin{pmatrix} + 1&0.5\\0.5&2 +\end{pmatrix}\begin{pmatrix} + 2&0\\0&2 +\end{pmatrix}+\begin{pmatrix} + 2&0\\0&2 +\end{pmatrix}\Sigma_z \begin{pmatrix} + 2&0\\0&2 +\end{pmatrix}=\begin{pmatrix} + 4&2\\2&8 +\end{pmatrix}+\begin{pmatrix} + 2&0\\0&2 +\end{pmatrix}\Sigma_z \begin{pmatrix} + 2&0\\0&2 +\end{pmatrix}$ \end{enumerate} - %TODO Aufgaben bearbeiten \end{document}