function [omckk,Tckk,Rckk] = compute_extrinsic_init(x_kk,X_kk,fc,cc,kc,alpha_c),
%compute_extrinsic
%
%[omckk,Tckk,Rckk] = compute_extrinsic_init(x_kk,X_kk,fc,cc,kc,alpha_c)
%
%Computes the extrinsic parameters attached to a 3D structure X_kk given its projection
%on the image plane x_kk and the intrinsic camera parameters fc, cc and kc.
%Works with planar and non-planar structures.
%
%INPUT: x_kk: Feature locations on the images
% X_kk: Corresponding grid coordinates
% fc: Camera focal length
% cc: Principal point coordinates
% kc: Distortion coefficients
% alpha_c: Skew coefficient
%
%OUTPUT: omckk: 3D rotation vector attached to the grid positions in space
% Tckk: 3D translation vector attached to the grid positions in space
% Rckk: 3D rotation matrices corresponding to the omc vectors
%
%Method: Computes the normalized point coordinates, then computes the 3D pose
%
%Important functions called within that program:
%
%normalize_pixel: Computes the normalize image point coordinates.
%
%pose3D: Computes the 3D pose of the structure given the normalized image projection.
%
%project_points.m: Computes the 2D image projections of a set of 3D points
if nargin < 6,
alpha_c = 0;
if nargin < 5,
kc = zeros(5,1);
if nargin < 4,
cc = zeros(2,1);
if nargin < 3,
fc = ones(2,1);
if nargin < 2,
error('Need 2D projections and 3D points (in compute_extrinsic.m)');
return;
end;
end;
end;
end;
end;
%keyboard;
% Compute the normalized coordinates:
xn = normalize_pixel(x_kk,fc,cc,kc,alpha_c);
Np = size(xn,2);
%% Check for planarity of the structure:
%keyboard;
X_mean = mean(X_kk')';
Y = X_kk - (X_mean*ones(1,Np));
YY = Y*Y';
[U,S,V] = svd(YY);
r = S(3,3)/S(2,2);
%keyboard;
if (r < 1e-3)|(Np < 5), %1e-3, %1e-4, %norm(X_kk(3,:)) < eps, % Test of planarity
%fprintf(1,'Planar structure detected: r=%f\n',r);
% Transform the plane to bring it in the Z=0 plane:
R_transform = V';
%norm(R_transform(1:2,3))
if norm(R_transform(1:2,3)) < 1e-6,
R_transform = eye(3);
end;
if det(R_transform) < 0, R_transform = -R_transform; end;
T_transform = -(R_transform)*X_mean;
X_new = R_transform*X_kk + T_transform*ones(1,Np);
% Compute the planar homography:
H = compute_homography(xn,X_new(1:2,:));
% De-embed the motion parameters from the homography:
sc = mean([norm(H(:,1));norm(H(:,2))]);
H = H/sc;
% Extra normalization for some reasons...
%H(:,1) = H(:,1)/norm(H(:,1));
%H(:,2) = H(:,2)/norm(H(:,2));
if 0, %%% Some tests for myself... the opposite sign solution leads to negative depth!!!
% Case#1: no opposite sign:
omckk1 = rodrigues([H(:,1:2) cross(H(:,1),H(:,2))]);
Rckk1 = rodrigues(omckk1);
Tckk1 = H(:,3);
Hs1 = [Rckk1(:,1:2) Tckk1];
xn1 = Hs1*[X_new(1:2,:);ones(1,Np)];
xn1 = [xn1(1,:)./xn1(3,:) ; xn1(2,:)./xn1(3,:)];
e1 = xn1 - xn;
% Case#2: opposite sign:
omckk2 = rodrigues([-H(:,1:2) cross(H(:,1),H(:,2))]);
Rckk2 = rodrigues(omckk2);
Tckk2 = -H(:,3);
Hs2 = [Rckk2(:,1:2) Tckk2];
xn2 = Hs2*[X_new(1:2,:);ones(1,Np)];
xn2 = [xn2(1,:)./xn2(3,:) ; xn2(2,:)./xn2(3,:)];
e2 = xn2 - xn;
if 1, %norm(e1) < norm(e2),
omckk = omckk1;
Tckk = Tckk1;
Rckk = Rckk1;
else
omckk = omckk2;
Tckk = Tckk2;
Rckk = Rckk2;
end;
else
u1 = H(:,1);
u1 = u1 / norm(u1);
u2 = H(:,2) - dot(u1,H(:,2)) * u1;
u2 = u2 / norm(u2);
u3 = cross(u1,u2);
RRR = [u1 u2 u3];
omckk = rodrigues(RRR);
%omckk = rodrigues([H(:,1:2) cross(H(:,1),H(:,2))]);
Rckk = rodrigues(omckk);
Tckk = H(:,3);
end;
%If Xc = Rckk * X_new + Tckk, then Xc = Rckk * R_transform * X_kk + Tckk + T_transform
Tckk = Tckk + Rckk* T_transform;
Rckk = Rckk * R_transform;
omckk = rodrigues(Rckk);
Rckk = rodrigues(omckk);
else
%fprintf(1,'Non planar structure detected: r=%f\n',r);
% Computes an initial guess for extrinsic parameters (works for general 3d structure, not planar!!!):
% The DLT method is applied here!!
J = zeros(2*Np,12);
xX = (ones(3,1)*xn(1,:)).*X_kk;
yX = (ones(3,1)*xn(2,:)).*X_kk;
J(1:2:end,[1 4 7]) = -X_kk';
J(2:2:end,[2 5 8]) = X_kk';
J(1:2:end,[3 6 9]) = xX';
J(2:2:end,[3 6 9]) = -yX';
J(1:2:end,12) = xn(1,:)';
J(2:2:end,12) = -xn(2,:)';
J(1:2:end,10) = -ones(Np,1);
J(2:2:end,11) = ones(Np,1);
JJ = J'*J;
[U,S,V] = svd(JJ);
RR = reshape(V(1:9,12),3,3);
if det(RR) < 0,
V(:,12) = -V(:,12);
RR = -RR;
end;
[Ur,Sr,Vr] = svd(RR);
Rckk = Ur*Vr';
sc = norm(V(1:9,12)) / norm(Rckk(:));
Tckk = V(10:12,12)/sc;
omckk = rodrigues(Rckk);
Rckk = rodrigues(omckk);
end;