%init_intrinsic_param
%
%Initialization of the intrinsic parameters.
%Runs as a script.
%
%INPUT: x_1,x_2,x_3,...: Feature locations on the images
% X_1,X_2,X_3,...: Corresponding grid coordinates
%
%OUTPUT: fc: Camera focal length
% cc: Principal point coordinates
% kc: Distortion coefficients
% alpha_c: skew coefficient
% KK: The camera matrix (containing fc, cc and alpha_c)
%
%Method: Computes the planar homographies H_1, H_2, H_3, ... and computes
% the focal length fc from orthogonal vanishing points constraint.
% The principal point cc is assumed at the center of the image.
% Assumes no image distortion (kc = [0;0;0;0])
%
%Note: The row vector active_images consists of zeros and ones. To deactivate an image, set the
% corresponding entry in the active_images vector to zero.
%
%
%Important function called within that program:
%
%compute_homography.m: Computes the planar homography between points on the grid in 3D, and the image plane.
%
%
%VERY IMPORTANT: This function works only with 2D rigs.
%In the future, a more general function will be there (working with 3D rigs as well).
if ~exist('two_focals_init'),
two_focals_init = 0;
end;
if ~exist('est_aspect_ratio'),
est_aspect_ratio = 1;
end;
check_active_images;
if ~exist(['x_' num2str(ind_active(1)) ]),
click_calib;
end;
fprintf(1,'\nInitialization of the intrinsic parameters - Number of images: %d\n',length(ind_active));
% Initialize the homographies:
for kk = 1:n_ima,
eval(['x_kk = x_' num2str(kk) ';']);
eval(['X_kk = X_' num2str(kk) ';']);
if (isnan(x_kk(1,1))),
if active_images(kk),
fprintf(1,'WARNING: Cannot calibrate with image %d. Need to extract grid corners first.\n',kk)
fprintf(1,' Set active_images(%d)=1; and run Extract grid corners.\n',kk)
end;
active_images(kk) = 0;
end;
if active_images(kk),
eval(['H_' num2str(kk) ' = compute_homography(x_kk,X_kk(1:2,:));']);
else
eval(['H_' num2str(kk) ' = NaN*ones(3,3);']);
end;
end;
check_active_images;
% initial guess for principal point and distortion:
if ~exist('nx'), [ny,nx] = size(I); end;
c_init = [nx;ny]/2 - 0.5; % initialize at the center of the image
k_init = [0;0;0;0;0]; % initialize to zero (no distortion)
% Compute explicitely the focal length using all the (mutually orthogonal) vanishing points
% note: The vanihing points are hidden in the planar collineations H_kk
A = [];
b = [];
% matrix that subtract the principal point:
Sub_cc = [1 0 -c_init(1);0 1 -c_init(2);0 0 1];
for kk=1:n_ima,
if active_images(kk),
eval(['Hkk = H_' num2str(kk) ';']);
Hkk = Sub_cc * Hkk;
% Extract vanishing points (direct and diagonals):
V_hori_pix = Hkk(:,1);
V_vert_pix = Hkk(:,2);
V_diag1_pix = (Hkk(:,1)+Hkk(:,2))/2;
V_diag2_pix = (Hkk(:,1)-Hkk(:,2))/2;
V_hori_pix = V_hori_pix/norm(V_hori_pix);
V_vert_pix = V_vert_pix/norm(V_vert_pix);
V_diag1_pix = V_diag1_pix/norm(V_diag1_pix);
V_diag2_pix = V_diag2_pix/norm(V_diag2_pix);
a1 = V_hori_pix(1);
b1 = V_hori_pix(2);
c1 = V_hori_pix(3);
a2 = V_vert_pix(1);
b2 = V_vert_pix(2);
c2 = V_vert_pix(3);
a3 = V_diag1_pix(1);
b3 = V_diag1_pix(2);
c3 = V_diag1_pix(3);
a4 = V_diag2_pix(1);
b4 = V_diag2_pix(2);
c4 = V_diag2_pix(3);
A_kk = [a1*a2 b1*b2;
a3*a4 b3*b4];
b_kk = -[c1*c2;c3*c4];
A = [A;A_kk];
b = [b;b_kk];
end;
end;
% use all the vanishing points to estimate focal length:
% Select the model for the focal. (solution to Gerd's problem)
if ~two_focals_init
if b'*(sum(A')') < 0,
two_focals_init = 1;
end;
end;
if two_focals_init
% Use a two focals estimate:
f_init = sqrt(abs(1./(inv(A'*A)*A'*b))); % if using a two-focal model for initial guess
else
% Use a single focal estimate:
f_init = sqrt(b'*(sum(A')') / (b'*b)) * ones(2,1); % if single focal length model is used
end;
if ~est_aspect_ratio,
f_init(1) = (f_init(1)+f_init(2))/2;
f_init(2) = f_init(1);
end;
alpha_init = 0;
%f_init = sqrt(b'*(sum(A')') / (b'*b)) * ones(2,1); % if single focal length model is used
% Global calibration matrix (initial guess):
KK = [f_init(1) alpha_init*f_init(1) c_init(1);0 f_init(2) c_init(2); 0 0 1];
inv_KK = inv(KK);
cc = c_init;
fc = f_init;
kc = k_init;
alpha_c = alpha_init;
fprintf(1,'\n\nCalibration parameters after initialization:\n\n');
fprintf(1,'Focal Length: fc = [ %3.5f %3.5f ]\n',fc);
fprintf(1,'Principal point: cc = [ %3.5f %3.5f ]\n',cc);
fprintf(1,'Skew: alpha_c = [ %3.5f ] => angle of pixel = %3.5f degrees\n',alpha_c,90 - atan(alpha_c)*180/pi);
fprintf(1,'Distortion: kc = [ %3.5f %3.5f %3.5f %3.5f %5.5f ]\n',kc);