% Rough estimates for principal point and focal length:
fg = [1009.661057548567 1009.706970843858 ]';
cg = [ 1031.688786545889 1288.395050759215]';
kg = [-0.054285891395760 -0.026812583950935 0 0]';
%fg = [ 139.77712 139.61650 ]';
%cg = [ 319.62550 258.16616 ]';
%kg = [ 0.02859 -0.01812 0.00839 -0.00182 ]';
%fg = [700;700]; %[ 1397.7712 1396.1650 ]';
%cg = [ 319.62550 258.16616 ]';
%kg = [ -1 -0.01812 0.00839 -0.00182 ]';
if exist(['wintx_' num2str(kk)]),
eval(['wintxkk = wintx_' num2str(kk) ';']);
if ~isempty(wintxkk) & ~isnan(wintxkk),
eval(['wintx = wintx_' num2str(kk) ';']);
eval(['winty = winty_' num2str(kk) ';']);
end;
end;
if ~exist('rosette_calibration', 'var')
rosette_calibration = 0;
end;
if (rosette_calibration),
wintx = 20;
winty = 20;
end;
fprintf(1,'Using (wintx,winty)=(%d,%d) - Window size = %dx%d (Note: To reset the window size, run script clearwin)\n',wintx,winty,2*wintx+1,2*winty+1);
grid_success = 0;
while (~grid_success)
figure(2); clf;
image(I);
axis image;
colormap(map);
set(2,'color',[1 1 1]);
title(['Click on the four extreme corners of the rectangular pattern (first corner = origin)... Image ' num2str(kk)]);
disp('Click on the four extreme corners of the rectangular complete pattern (the first clicked corner is the origin)...');
x= [];y = [];
figure(2); hold on;
for count = 1:4,
[xi,yi] = ginput4(1);
[xxi] = cornerfinder([xi;yi],I,winty,wintx);
xi = xxi(1);
yi = xxi(2);
figure(2);
plot(xi,yi,'+','color',[ 1.000 0.314 0.510 ],'linewidth',2);
plot(xi + [wintx+.5 -(wintx+.5) -(wintx+.5) wintx+.5 wintx+.5],yi + [winty+.5 winty+.5 -(winty+.5) -(winty+.5) winty+.5],'-','color',[ 1.000 0.314 0.510 ],'linewidth',2);
x = [x;xi];
y = [y;yi];
plot(x,y,'-','color',[ 1.000 0.314 0.510 ],'linewidth',2);
drawnow;
end;
plot([x;x(1)],[y;y(1)],'-','color',[ 1.000 0.314 0.510 ],'linewidth',2);
drawnow;
hold off;
[Xc,good,bad,type] = cornerfinder([x';y'],I,winty,wintx); % the four corners
x = Xc(1,:)';
y = Xc(2,:)';
% Sort the corners:
x_mean = mean(x);
y_mean = mean(y);
x_v = x - x_mean;
y_v = y - y_mean;
theta = atan2(-y_v,x_v);
[junk,ind] = sort(theta);
[junk,ind] = sort(mod(theta-theta(1),2*pi));
ind = ind([4 3 2 1]); %-> New: the Z axis is pointing uppward
x = x(ind);
y = y(ind);
if (rosette_calibration && (kk < 17))
% Enforce the ordering convention for the Rosette calibration.
c_ima = [nx/2 + 0.5 ; ny/2 + 0.5];
vects = [x'-c_ima(1) ; y'-c_ima(2)];
r = sqrt(sum(vects.^2));
[r_junk,ind_sort_r] = sort(r);
ind_23 = ind_sort_r(1:2);
ind_14 = ind_sort_r(3:4);
if det(vects(:,ind_23))<0
ind2 = ind_23(1);
ind3 = ind_23(2);
else
ind2 = ind_23(2);
ind3 = ind_23(1);
end;
if det(vects(:,ind_14))<0
ind1 = ind_14(1);
ind4 = ind_14(2);
else
ind1 = ind_14(2);
ind4 = ind_14(1);
end;
ind_resort = [ind1;ind2;ind3;ind4];
x = x(ind_resort);
y = y(ind_resort);
end;
x1= x(1); x2 = x(2); x3 = x(3); x4 = x(4);
y1= y(1); y2 = y(2); y3 = y(3); y4 = y(4);
% Find center:
p_center = cross(cross([x1;y1;1],[x3;y3;1]),cross([x2;y2;1],[x4;y4;1]));
x5 = p_center(1)/p_center(3);
y5 = p_center(2)/p_center(3);
% center on the X axis:
x6 = (x3 + x4)/2;
y6 = (y3 + y4)/2;
% center on the Y axis:
x7 = (x1 + x4)/2;
y7 = (y1 + y4)/2;
% Direction of displacement for the X axis:
vX = [x6-x5;y6-y5];
vX = vX / norm(vX);
% Direction of displacement for the X axis:
vY = [x7-x5;y7-y5];
vY = vY / norm(vY);
% Direction of diagonal:
vO = [x4 - x5; y4 - y5];
vO = vO / norm(vO);
delta = 30;
figure(2); image(I);
axis image;
colormap(map);
hold on;
plot([x;x(1)],[y;y(1)],'g-');
plot(x,y,'og');
hx=text(x6 + delta * vX(1) ,y6 + delta*vX(2),'X');
set(hx,'color','g','Fontsize',14);
hy=text(x7 + delta*vY(1), y7 + delta*vY(2),'Y');
set(hy,'color','g','Fontsize',14);
hO=text(x4 + delta * vO(1) ,y4 + delta*vO(2),'O','color','g','Fontsize',14);
for iii = 1:4,
text(x(iii),y(iii),num2str(iii));
end;
hold off;
if manual_squares,
n_sq_x = input(['Number of squares along the X direction ([]=' num2str(n_sq_x_default) ') = ']); %6
if isempty(n_sq_x), n_sq_x = n_sq_x_default; end;
n_sq_y = input(['Number of squares along the Y direction ([]=' num2str(n_sq_y_default) ') = ']); %6
if isempty(n_sq_y), n_sq_y = n_sq_y_default; end;
grid_success = 1;
else
% Try to automatically count the number of squares in the grid
if (rosette_calibration)
win_count = 10;
else
win_count = wintx;
end;
n_sq_x1 = count_squares_fisheye_distorted(I,x1,y1,x2,y2,win_count, fg, cg, kg);
n_sq_x2 = count_squares_fisheye_distorted(I,x3,y3,x4,y4,win_count, fg, cg, kg);
n_sq_y1 = count_squares_fisheye_distorted(I,x2,y2,x3,y3,win_count, fg, cg, kg);
n_sq_y2 = count_squares_fisheye_distorted(I,x4,y4,x1,y1,win_count, fg, cg, kg);
%n_sq_x1 = count_squares(I,x1,y1,x2,y2,wintx);
%n_sq_x2 = count_squares(I,x3,y3,x4,y4,wintx);
%n_sq_y1 = count_squares(I,x2,y2,x3,y3,wintx);
%n_sq_y2 = count_squares(I,x4,y4,x1,y1,wintx);
% If could not count the number of squares, enter manually
if (n_sq_x1~=n_sq_x2)|(n_sq_y1~=n_sq_y2),
if ~rosette_calibration,
disp('Could not count the number of squares in the grid. Enter manually.');
n_sq_x = input(['Number of squares along the X direction ([]=' num2str(n_sq_x_default) ') = ']); %6
if isempty(n_sq_x), n_sq_x = n_sq_x_default; end;
n_sq_y = input(['Number of squares along the Y direction ([]=' num2str(n_sq_y_default) ') = ']); %6
if isempty(n_sq_y), n_sq_y = n_sq_y_default; end;
grid_success = 1;
else
grid_success = 0;
end;
else
n_sq_x = n_sq_x1;
n_sq_y = n_sq_y1;
grid_success = 1;
end;
end;
if ~grid_success
fprintf(1,'Invalid grid. Try again.\n');
end;
end;
n_sq_x_default = n_sq_x;
n_sq_y_default = n_sq_y;
if (exist('dX')~=1)|(exist('dY')~=1), % This question is now asked only once
% Enter the size of each square
dX = input(['Size dX of each square along the X direction ([]=' num2str(dX_default) 'mm) = ']);
dY = input(['Size dY of each square along the Y direction ([]=' num2str(dY_default) 'mm) = ']);
if isempty(dX), dX = dX_default; else dX_default = dX; end;
if isempty(dY), dY = dY_default; else dY_default = dY; end;
else
fprintf(1,['Size of each square along the X direction: dX=' num2str(dX) 'mm\n']);
fprintf(1,['Size of each square along the Y direction: dY=' num2str(dY) 'mm (Note: To reset the size of the squares, clear the variables dX and dY)\n']);
end;
x_n = (x - 1 - cg(1))/fg(1);
y_n = (y - 1 - cg(2))/fg(2);
[x_pn] = comp_fisheye_distortion([x_n' ; y_n'],kg);
% Compute the inside points through computation of the planar homography (collineation)
a00 = [x_pn(1,1);x_pn(2,1);1];
a10 = [x_pn(1,2);x_pn(2,2);1];
a11 = [x_pn(1,3);x_pn(2,3);1];
a01 = [x_pn(1,4);x_pn(2,4);1];
% Compute the planar collineation: (return the normalization matrix as well)
[Homo,Hnorm,inv_Hnorm] = compute_homography([a00 a10 a11 a01],[0 1 1 0;0 0 1 1;1 1 1 1]);
% Build the grid using the planar collineation:
x_l = ((0:n_sq_x)'*ones(1,n_sq_y+1))/n_sq_x;
y_l = (ones(n_sq_x+1,1)*(0:n_sq_y))/n_sq_y;
pts = [x_l(:) y_l(:) ones((n_sq_x+1)*(n_sq_y+1),1)]';
XXpn = Homo*pts;
XXpn = XXpn(1:2,:) ./ (ones(2,1)*XXpn(3,:));
XX = apply_fisheye_distortion(XXpn,kg);
XX(1,:) = fg(1)*XX(1,:) + cg(1) + 1;
XX(2,:) = fg(2)*XX(2,:) + cg(2) + 1;
% Complete size of the rectangle
W = n_sq_x*dX;
L = n_sq_y*dY;
Np = (n_sq_x+1)*(n_sq_y+1);
disp('Corner extraction...');
grid_pts = cornerfinder(XX,I,winty,wintx); %%% Finds the exact corners at every points!
%grid_pts = XX; %%% Finds the exact corners at every points!
grid_pts = grid_pts - 1; % subtract 1 to bring the origin to (0,0) instead of (1,1) in matlab (not necessary in C)
ind_corners = [1 n_sq_x+1 (n_sq_x+1)*n_sq_y+1 (n_sq_x+1)*(n_sq_y+1)]; % index of the 4 corners
ind_orig = (n_sq_x+1)*n_sq_y + 1;
xorig = grid_pts(1,ind_orig);
yorig = grid_pts(2,ind_orig);
dxpos = mean([grid_pts(:,ind_orig) grid_pts(:,ind_orig+1)]');
dypos = mean([grid_pts(:,ind_orig) grid_pts(:,ind_orig-n_sq_x-1)]');
x_box_kk = [grid_pts(1,:)-(wintx+.5);grid_pts(1,:)+(wintx+.5);grid_pts(1,:)+(wintx+.5);grid_pts(1,:)-(wintx+.5);grid_pts(1,:)-(wintx+.5)];
y_box_kk = [grid_pts(2,:)-(winty+.5);grid_pts(2,:)-(winty+.5);grid_pts(2,:)+(winty+.5);grid_pts(2,:)+(winty+.5);grid_pts(2,:)-(winty+.5)];
figure(3);
image(I); axis image; colormap(map); hold on;
plot(grid_pts(1,:)+1,grid_pts(2,:)+1,'r+');
plot(x_box_kk+1,y_box_kk+1,'-b');
plot(grid_pts(1,ind_corners)+1,grid_pts(2,ind_corners)+1,'mo');
plot(xorig+1,yorig+1,'*m');
h = text(xorig+delta*vO(1),yorig+delta*vO(2),'O');
set(h,'Color','m','FontSize',14);
h2 = text(dxpos(1)+delta*vX(1),dxpos(2)+delta*vX(2),'dX');
set(h2,'Color','g','FontSize',14);
h3 = text(dypos(1)+delta*vY(1),dypos(2)+delta*vY(2),'dY');
set(h3,'Color','g','FontSize',14);
xlabel('Xc (in camera frame)');
ylabel('Yc (in camera frame)');
title('Extracted corners');
zoom on;
drawnow;
hold off;
Xi = reshape(([0:n_sq_x]*dX)'*ones(1,n_sq_y+1),Np,1)';
Yi = reshape(ones(n_sq_x+1,1)*[n_sq_y:-1:0]*dY,Np,1)';
Zi = zeros(1,Np);
Xgrid = [Xi;Yi;Zi];
% All the point coordinates (on the image, and in 3D) - for global optimization:
x = grid_pts;
X = Xgrid;
% Saves all the data into variables:
eval(['dX_' num2str(kk) ' = dX;']);
eval(['dY_' num2str(kk) ' = dY;']);
eval(['wintx_' num2str(kk) ' = wintx;']);
eval(['winty_' num2str(kk) ' = winty;']);
eval(['x_' num2str(kk) ' = x;']);
eval(['X_' num2str(kk) ' = X;']);
eval(['n_sq_x_' num2str(kk) ' = n_sq_x;']);
eval(['n_sq_y_' num2str(kk) ' = n_sq_y;']);