function ns = count_squares_distorted(I,x1,y1,x2,y2,win, fg, cg, kg);
[ny,nx] = size(I);
if ((x1-win <= 0) || (x1+win >= nx) || (y1-win <= 0) || (y1+win >= ny) || ...
(x2-win <= 0) || (x2+win >= nx) || (y2-win <= 0) || (y2+win >= ny))
ns = -1;
return;
end;
if ((x1 - x2)^2+(y1-y2)^2) < win,
ns = -1;
return;
end;
nX = round(sqrt((x1-x2)^2 + (y1-y2)^2));
alpha_x = (0:nX)/nX;
pt1n = normalize_pixel([x1;y1]-1,fg,cg,kg,0);
pt2n = normalize_pixel([x2;y2]-1,fg,cg,kg,0);
ptsn = repmat(pt1n,[1 nX+1]) + (pt2n - pt1n)*alpha_x;
pts = apply_distortion2(ptsn,kg);
pts(1,:) = fg(1)*pts(1,:) + cg(1);
pts(2,:) = fg(2)*pts(2,:) + cg(2);
% Check that the curve is within the image:
good_line = (min(pts(1,:))-win > 0) && (max(pts(1,:))+win < (nx-1)) && ...
(min(pts(2,:))-win > 0) && (max(pts(2,:))+win <(ny-1));
if ~good_line,
ns = -1;
return;
end;
% Deviate the trajectory orthogonally:
lambda = [y1 - y2 ; x2 - x1];
lambda = lambda / sqrt(sum(lambda.^2));
Np = size(pts,2);
xs_mat = ones(2*win + 1,1)*pts(1,:);
ys_mat = ones(2*win + 1,1)*pts(2,:);
win_mat = (-win:win)'*ones(1,Np);
xs_mat2 = round(xs_mat - win_mat * lambda(1));
ys_mat2 = round(ys_mat - win_mat * lambda(2));
ind_mat = (xs_mat2) * ny + ys_mat2 + 1;
ima_patch = zeros(2*win + 1,Np);
ima_patch(:) = I(ind_mat(:));
filtk = [ones(win,Np);zeros(1,Np);-ones(win,Np)];
out_f = sum(filtk.*ima_patch);
out_f_f = conv2(out_f,[1/4 1/2 1/4],'same');
out_f_f = out_f_f(win+1:end-win);
ns = length(find(((out_f_f(2:end)>=0)&(out_f_f(1:end-1)<0)) | ((out_f_f(2:end)<=0)&(out_f_f(1:end-1)>0))))+1;