\documentclass[a4paper,12pt]{scrartcl}
\usepackage[ngerman]{babel}
\usepackage{graphicx} %BIlder einbinden
\usepackage{amsmath} %erweiterte Mathe-Zeichen
\usepackage{amsfonts} %weitere fonts
\usepackage[utf8]{inputenc} %Umlaute & Co
\usepackage{hyperref} %Links
\usepackage{ifthen} %ifthenelse
\usepackage{enumerate}
\usepackage{pdfpages}
\usepackage{algpseudocode} %Pseudocode
\usepackage{dsfont} % schöne Zahlenräumezeichen
\usepackage{amssymb, amsthm} %noch stärker erweiterte Mathe-Zeichen
\usepackage{tikz} %TikZ ist kein Zeichenprogramm
\usetikzlibrary{trees,automata,arrows,shapes}
\pagestyle{empty}
\topmargin-50pt
\newcounter{aufgabe}
\def\tand{&}
\newcommand{\makeTableLine}[2][0]{%
\setcounter{aufgabe}{1}%
\whiledo{\value{aufgabe} < #1}%
{%
#2\tand\stepcounter{aufgabe}%
}
}
\newcommand{\aufgTable}[1]{
\def\spalten{\numexpr #1 + 1 \relax}
\begin{tabular}{|*{\spalten}{p{1cm}|}}
\makeTableLine[\spalten]{A\theaufgabe}$\Sigma$~~\\ \hline
\rule{0pt}{15pt}\makeTableLine[\spalten]{}\\
\end{tabular}
}
\def\header#1#2#3#4#5#6#7{\pagestyle{empty}
\begin{minipage}[t]{0.47\textwidth}
\begin{flushleft}
{\bf #4}\\
#5
\end{flushleft}
\end{minipage}
\begin{minipage}[t]{0.5\textwidth}
\begin{flushright}
#6 \vspace{0.5cm}\\
% Number of Columns Definition of Columns second empty line
% \begin{tabular}{|*{5}{C{1cm}|}}\hline A1&A2&A3&A4&$\Sigma$\\\hline&&&&\\\hline\end{tabular}\\\vspace*{0.1cm}
\aufgTable{#7}
\end{flushright}
\end{minipage}
\vspace{1cm}
\begin{center}
{\Large\bf Assignment #1}
{(Hand-in date #3)}
\end{center}
}
%counts the exercisenumber
\newcounter{n}
%Kommando für Aufgaben
%\Aufgabe{AufgTitel}{Punktezahl}
\newcommand{\Aufgabe}[2]{\stepcounter{n}
\textbf{Exercise \arabic{n}: #1} (#2 Punkte)\\}
\begin{document}
%\header{BlattNr}{Tutor}{Abgabedatum}{Vorlesungsname}{Namen}{Semester}{Anzahl Aufgaben}
\header{4}{}{2015-19-05}{Mobile Robots}{
\textit{Jan-Peter Hohloch}\\ \textit{Maximus Mutschler}
}{SS 15}{3}
\vspace{1cm}
\Aufgabe{}{8}
\begin{enumerate}[(a)]
\item $v_w = \cos\left(\theta_w-\phi\right)\cdot v_R = v_R \cdot \underbrace{\left(\cos\left(\theta_w\right)\cdot \cos\left(\phi\right) + \sin\left(\theta_w\right) \cdot \sin\left(\phi\right)\right)}_{T}$
\item \begin{align*}
v_1&= v_R \cdot \left(\sin\left(\frac{\pi}{2}+\frac{\pi}{6}\right)\cdot \cos\left(\phi\right) + \cos\left(\frac{\pi}{2}+\frac{\pi}{6}\right) \cdot \sin\left(\phi\right)\right)-l ^R\omega\\
&=v_R \cdot \left(\frac{\sqrt{3}}{2} \cos\left(\phi\right)- \frac{1}{2} \sin\left(\phi\right)\right)-l ^R\omega\\
v_2&= v_R \cdot \left(\sin\left(\frac{\pi}{2}-\frac{\pi}{2}\right)\cdot \cos\left(\phi\right) + \cos\left(\frac{\pi}{2}+\frac{\pi}{2}\right) \cdot \sin\left(\phi\right)\right)-l ^R\omega\\
&=v_R \cdot \sin\left(\phi\right) -l^R\omega\\
v_3&= v_R \cdot \left(\sin\left(\frac{\pi}{2}+\frac{5\pi}{6}\right)\cdot \cos\left(\phi\right) + \cos\left(\frac{\pi}{2}+\frac{5\pi}{6}\right) \cdot \sin\left(\phi\right)\right)-l ^R\omega\\
&=v_R \cdot \left(-\frac{\sqrt{3}}{2} \cos\left(\phi\right)- \frac{1}{2} \sin\left(\phi\right)\right)-l ^R\omega\\
^Rv_x &= v_R * \cos\left(\phi\right)\\
^Rv_y &= v_R * \sin\left(\phi\right)\\
\\ \Rightarrow
\\ \begin{pmatrix}
v_{w,1} \\
v_{w,2}\\
v_{w,3}\\
\end{pmatrix} &=
\begin{pmatrix}
\frac{\sqrt{3}}{2} & -\frac{1}{2} &-l\\
1 & 0 &-l\\
-\frac{\sqrt{3}}{2} & -\frac{1}{2} &-l\\
\end{pmatrix} \cdot
\begin{pmatrix}
^Rv_x \\
^Rv_y\\
^R\omega\\
\end{pmatrix}
\end{align*}
\end{enumerate}
\pagebreak
\Aufgabe{}{8}
\begin{enumerate}[(a)]
\item $ ^bg=
^b\mathbf{R}_w \cdot \begin{pmatrix}
0 \\ 0\\ -g
\end{pmatrix}
$
\item $^ba_m = ^bg+^ba_l\\
$
if $ ^ba_m=0$ \\
$
^ba_l = -^bg
$
\item static $\Rightarrow ^ba_l=0$\begin{align*}
^ba_m &= b_g+^ba_l\\ &= ^b\mathbf{R}_w \cdot \begin{pmatrix}
0 \\ 0\\ -g
\end{pmatrix} \\
&=
\begin{pmatrix}
\sin(\theta)g \\-\cos(\theta)*\sin(\phi)g \\ -\cos(\theta)*\cos(\phi)g
\end{pmatrix}\\
^ba_{m,x}&= \sin(\theta)g \\
\theta &= \sin^{-1}(\frac{^ba_{m,x}}{g})\\
^ba_{m,y} &= -g\cdot \sin(\phi)\cdot \sqrt{1-\left(\frac{^ba_x}{g}\right)^2} \\
\phi&= \sin^{-1} \left(-\frac{^ba_y}{g*\sqrt{1-\left(\frac{^ba_x}{g}\right)^2}}\right)
\end{align*}
\end{enumerate}\pagebreak
\Aufgabe{}{8}
\begin{enumerate}[(a)]
\item \begin{align*}
\frac{g*M}{RT_0} &=: \beta\\
\left[\beta\right] &= \dfrac{1}{m}\\
\beta& \approx 1.1854 *10^{-4} \dfrac{1}{m}\\
p_0 &= 101325 Pa\\
p(a)&= p_0 \cdot exp(-\beta a)\\
p(a)_{lin}&= p(\overline{a}) + p'(\overline{a})\cdot (\overline{a}-a)\\
p'(\overline{a})& = -\beta\cdot p_0 \cdot exp(-\beta\overline{a})\\
p(a)_{lin}&= p_0 \cdot exp(-\beta\overline{a}) -\beta\cdot p_0 \cdot exp(-\beta\overline{a})\cdot (a-\overline{a})\\
&= p_0 \cdot exp(-\beta\overline{a})(1-\beta(a-\overline{a}))
\end{align*}
\item \begin{align*}
\overline{a}_1&= 100m \\
p(a)_{model} &= p_0 \cdot exp(-\beta100m)(1-\beta(a-100m))\\
p(a)_{model} &= 101317.937 - 11.86959596*a \\
\overline{a_2}&= 10000m\\
p(a)_{passenger} &= p_0 \cdot exp(-\beta 10000m)(1-\beta(a-10000m))\\
p(a)_{passenger} &= 67675.77342 - 3.670864739*a\\
\end{align*}
\item
\begin{math}
\sigma_p= 5Pa\\
a(p)=\frac{p-p_0e^{-\beta\bar{a}}-p_0\beta\bar{a}e^{-\beta\bar{a}}}{-p_0\beta e^{-\beta\bar{a}}}=-\frac{p}{\beta p_0}\cdot e^{\beta\bar{a}}+\beta^{-1}+\bar{a}
\end{math}
\begin{align*}
a(p\pm\sigma_p)&=-\frac{p\pm\sigma_p}{\beta p_0}\cdot e^{\bar{a}\beta}+\beta^{-1}+\bar{a}\\
&=-\frac{p}{\beta p_0}\cdot e^{\bar{a}\beta}\pm\frac{\sigma_p}{\beta p_0}\cdot e^{\bar{a}\beta}+\beta^{-1}+\bar{a}\\
\sigma_a&=\frac{\sigma_p}{\beta p_0}\cdot e^{\bar{a}\beta}
\end{align*}
$\Rightarrow \sigma_{a_{model}}=\frac{5}{\beta p_0}\cdot e^{100\beta}\approx 0.42124,\\
\sigma_{a_{passenger}}=\frac{5}{\beta p_0}\cdot e^{10000\beta}\approx 1.3621$
\end{enumerate}
\end{document}