function [xc,good,bad,type] = edgefinder(xt,I,wintx,winty,wx2,wy2);
%[xc] = cornerfinder(xt,I);
%
%Finds the sub-pixel corners on the image I with initial guess xt
%xt and xc are 2xN matrices. The first component is the x coordinate
%(horizontal) and the second component is the y coordinate (vertical)
%
%Based on Harris corner finder method
%
%Finds corners to a precision below .1 pixel!
%Oct. 14th, 1997 - UPDATED to work with vertical and horizontal edges as well!!!
%Sept 1998 - UPDATED to handle diverged points: we keep the original points
%good is a binary vector indicating wether a feature point has been properly
%found.
%
%Add a zero zone of size wx2,wy2
%July 15th, 1999 - Bug on the mask building... fixed + change to Gaussian mask with higher
%resolution and larger number of iterations.
% California Institute of Technology
% (c) Jean-Yves Bouguet -- Oct. 14th, 1997
% WARNING!!! This function has not been fully tested!!!
line_feat = 1; % set to 1 to allow for extraction of line features.
xt = xt';
xt = fliplr(xt);
if nargin < 4,
winty = 5;
if nargin < 3,
wintx = 5;
end;
end;
if nargin < 6,
wx2 = -1;
wy2 = -1;
end;
%mask = ones(2*wintx+1,2*winty+1);
mask = exp(-((-wintx:wintx)'/(wintx)).^2) * exp(-((-winty:winty)/(winty)).^2);
if (wx2>0) & (wy2>0),
if ((wintx - wx2)>=2)&((winty - wy2)>=2),
mask(wintx+1-wx2:wintx+1+wx2,winty+1-wy2:winty+1+wy2)= zeros(2*wx2+1,2*wy2+1);
end;
end;
offx = [-wintx:wintx]'*ones(1,2*winty+1);
offy = ones(2*wintx+1,1)*[-winty:winty];
resolution = 0.005;
MaxIter = 10;
[nx,ny] = size(I);
N = size(xt,1);
xc = xt; % first guess... they don't move !!!
type = zeros(1,N);
for i=1:N,
v_extra = resolution + 1; % just larger than resolution
compt = 0; % no iteration yet
while (norm(v_extra) > resolution) & (compt<MaxIter),
cIx = xc(i,1); %
cIy = xc(i,2); % Coords. of the point
crIx = round(cIx); % on the initial image
crIy = round(cIy); %
itIx = cIx - crIx; % Coefficients
itIy = cIy - crIy; % to compute
if itIx > 0, % the sub pixel
vIx = [itIx 1-itIx 0]'; % accuracy.
else
vIx = [0 1+itIx -itIx]';
end;
if itIy > 0,
vIy = [itIy 1-itIy 0];
else
vIy = [0 1+itIy -itIy];
end;
% What if the sub image is not in?
if (crIx-wintx-2 < 1), xmin=1; xmax = 2*wintx+5;
elseif (crIx+wintx+2 > nx), xmax = nx; xmin = nx-2*wintx-4;
else
xmin = crIx-wintx-2; xmax = crIx+wintx+2;
end;
if (crIy-winty-2 < 1), ymin=1; ymax = 2*winty+5;
elseif (crIy+winty+2 > ny), ymax = ny; ymin = ny-2*winty-4;
else
ymin = crIy-winty-2; ymax = crIy+winty+2;
end;
SI = I(xmin:xmax,ymin:ymax); % The necessary neighborhood
SI = conv2(conv2(SI,vIx,'same'),vIy,'same');
SI = SI(2:2*wintx+4,2:2*winty+4); % The subpixel interpolated neighborhood
[gy,gx] = gradient(SI); % The gradient image
gx = gx(2:2*wintx+2,2:2*winty+2); % extraction of the useful parts only
gy = gy(2:2*wintx+2,2:2*winty+2); % of the gradients
px = cIx + offx;
py = cIy + offy;
gxx = gx .* gx .* mask;
gyy = gy .* gy .* mask;
gxy = gx .* gy .* mask;
bb = [sum(sum(gxx .* px + gxy .* py)); sum(sum(gxy .* px + gyy .* py))];
a = sum(sum(gxx));
b = sum(sum(gxy));
c = sum(sum(gyy));
dt = a*c - b^2;
xc2 = [c*bb(1)-b*bb(2) a*bb(2)-b*bb(1)]/dt;
%keyboard;
%if line_feat,
G = [a b;b c];
[U,S,V] = svd(G);
%keyboard;
% If non-invertible, then project the point onto the edge orthogonal:
%if (S(1,1)/S(2,2) > 50),
% projection operation:
xc2 = xc2 + sum((xc(i,:)-xc2).*(V(:,2)'))*V(:,2)';
type(i) = 1;
%end;
%end;
%keyboard;
% G = [a b;b c];
% [U,S,V] = svd(G);
% if S(1,1)/S(2,2) > 150,
% bb2 = U'*bb;
% xc2 = (V*[bb2(1)/S(1,1) ;0])';
% else
% xc2 = [c*bb(1)-b*bb(2) a*bb(2)-b*bb(1)]/dt;
% end;
%if (abs(a)> 50*abs(c)),
% xc2 = [(c*bb(1)-b*bb(2))/dt xc(i,2)];
% elseif (abs(c)> 50*abs(a))
% xc2 = [xc(i,1) (a*bb(2)-b*bb(1))/dt];
% else
% xc2 = [c*bb(1)-b*bb(2) a*bb(2)-b*bb(1)]/dt;
% end;
%keyboard;
v_extra = xc(i,:) - xc2;
xc(i,:) = xc2;
% keyboard;
compt = compt + 1;
end
end;
% check for points that diverge:
delta_x = xc(:,1) - xt(:,1);
delta_y = xc(:,2) - xt(:,2);
%keyboard;
bad = (abs(delta_x) > wintx) | (abs(delta_y) > winty);
good = ~bad;
in_bad = find(bad);
% For the diverged points, keep the original guesses:
xc(in_bad,:) = xt(in_bad,:);
xc = fliplr(xc);
xc = xc';
bad = bad';
good = good';