Newer
Older
abgabensammlungSS15 / mr / Ub5 / calib_images / Calib_Results.m
@MaxXximus92 MaxXximus92 on 20 May 2015 5 KB mr Ub5 ea UB5 initial
% Intrinsic and Extrinsic Camera Parameters
%
% This script file can be directly excecuted under Matlab to recover the camera intrinsic and extrinsic parameters.
% IMPORTANT: This file contains neither the structure of the calibration objects nor the image coordinates of the calibration points.
%            All those complementary variables are saved in the complete matlab data file Calib_Results.mat.
% For more information regarding the calibration model visit http://www.vision.caltech.edu/bouguetj/calib_doc/


%-- Focal length:
fc = [ 854.978537098203219 ; 827.066128052557588 ];

%-- Principal point:
cc = [ 577.057178058216778 ; 144.980534130229529 ];

%-- Skew coefficient:
alpha_c = 0.000000000000000;

%-- Distortion coefficients:
kc = [ 0.006945698565263 ; 0.083618463804694 ; -0.021769465128195 ; 0.072457896598761 ; 0.000000000000000 ];

%-- Focal length uncertainty:
fc_error = [ 57.040050910917287 ; 44.542135114088978 ];

%-- Principal point uncertainty:
cc_error = [ 65.877741250539444 ; 31.910194995190658 ];

%-- Skew coefficient uncertainty:
alpha_c_error = 0.000000000000000;

%-- Distortion coefficients uncertainty:
kc_error = [ 0.092104139086721 ; 0.064532023758369 ; 0.015070247892645 ; 0.026234928011987 ; 0.000000000000000 ];

%-- Image size:
nx = 640;
ny = 480;


%-- Various other variables (may be ignored if you do not use the Matlab Calibration Toolbox):
%-- Those variables are used to control which intrinsic parameters should be optimized

n_ima = 15;						% Number of calibration images
est_fc = [ 1 ; 1 ];					% Estimation indicator of the two focal variables
est_aspect_ratio = 1;				% Estimation indicator of the aspect ratio fc(2)/fc(1)
center_optim = 1;					% Estimation indicator of the principal point
est_alpha = 0;						% Estimation indicator of the skew coefficient
est_dist = [ 1 ; 1 ; 1 ; 1 ; 0 ];	% Estimation indicator of the distortion coefficients


%-- Extrinsic parameters:
%-- The rotation (omc_kk) and the translation (Tc_kk) vectors for every calibration image and their uncertainties

%-- Image #1:
omc_1 = [ 1.995757e+00 ; 2.053173e+00 ; 4.040009e-01 ];
Tc_1  = [ -4.575606e+02 ; 1.783393e+02 ; 1.530365e+03 ];
omc_error_1 = [ 9.134376e-02 ; 7.292460e-02 ; 1.228391e-01 ];
Tc_error_1  = [ 1.181642e+02 ; 6.108623e+01 ; 9.010338e+01 ];

%-- Image #2:
omc_2 = [ 2.170851e+00 ; 2.095896e+00 ; 7.597938e-03 ];
Tc_2  = [ -8.825159e+02 ; 4.132850e+01 ; 1.136566e+03 ];
omc_error_2 = [ 6.264919e-02 ; 7.363788e-02 ; 1.256151e-01 ];
Tc_error_2  = [ 8.959521e+01 ; 5.493221e+01 ; 9.443056e+01 ];

%-- Image #3:
omc_3 = [ 1.530043e+00 ; 1.240330e+00 ; -7.655396e-01 ];
Tc_3  = [ -6.343018e+02 ; 1.672382e+02 ; 1.132173e+03 ];
omc_error_3 = [ 3.056284e-02 ; 5.159205e-02 ; 8.365717e-02 ];
Tc_error_3  = [ 8.776683e+01 ; 5.088329e+01 ; 7.076839e+01 ];

%-- Image #4:
omc_4 = [ 1.451303e+00 ; 1.321938e+00 ; -1.111874e+00 ];
Tc_4  = [ -4.653485e+02 ; 1.948217e+02 ; 1.229732e+03 ];
omc_error_4 = [ 3.844956e-02 ; 5.066002e-02 ; 8.395729e-02 ];
Tc_error_4  = [ 9.568394e+01 ; 5.139910e+01 ; 6.146523e+01 ];

%-- Image #5:
omc_5 = [ -1.740680e+00 ; -1.905404e+00 ; -7.348696e-01 ];
Tc_5  = [ -7.310709e+02 ; -1.646422e+02 ; 1.026920e+03 ];
omc_error_5 = [ 4.543777e-02 ; 5.266932e-02 ; 9.174843e-02 ];
Tc_error_5  = [ 8.035783e+01 ; 4.749430e+01 ; 8.802916e+01 ];

%-- Image #6:
omc_6 = [ 2.106712e+00 ; 2.136431e+00 ; 4.109344e-01 ];
Tc_6  = [ -2.823792e+02 ; -3.466001e+02 ; 2.500420e+03 ];
omc_error_6 = [ 1.196789e-01 ; 1.307821e-01 ; 2.281843e-01 ];
Tc_error_6  = [ 1.892276e+02 ; 9.982670e+01 ; 1.734826e+02 ];

%-- Image #7:
omc_7 = [ 1.365947e+00 ; 1.451353e+00 ; 9.535067e-01 ];
Tc_7  = [ -1.415682e+03 ; -3.013315e+02 ; 1.910662e+03 ];
omc_error_7 = [ 5.867475e-02 ; 7.701908e-02 ; 8.475881e-02 ];
Tc_error_7  = [ 1.556012e+02 ; 8.986739e+01 ; 1.663202e+02 ];

%-- Image #8:
omc_8 = [ 1.484042e+00 ; 9.849878e-01 ; -6.244043e-02 ];
Tc_8  = [ -1.691445e+03 ; 4.763898e+02 ; 2.178031e+03 ];
omc_error_8 = [ 4.062499e-02 ; 5.971006e-02 ; 8.542558e-02 ];
Tc_error_8  = [ 1.795399e+02 ; 1.087514e+02 ; 1.883822e+02 ];

%-- Image #9:
omc_9 = [ 2.046247e+00 ; 2.033812e+00 ; -6.767102e-02 ];
Tc_9  = [ -1.172746e+03 ; -1.960213e+02 ; 1.590760e+03 ];
omc_error_9 = [ 4.766080e-02 ; 8.183373e-02 ; 1.439476e-01 ];
Tc_error_9  = [ 1.251337e+02 ; 7.526812e+01 ; 1.306311e+02 ];

%-- Image #10:
omc_10 = [ -2.159407e+00 ; -2.072502e+00 ; -1.027183e+00 ];
Tc_10  = [ -1.075519e+03 ; -2.610008e+02 ; 1.581199e+03 ];
omc_error_10 = [ 8.136627e-02 ; 5.024202e-02 ; 1.517310e-01 ];
Tc_error_10  = [ 1.280588e+02 ; 7.465618e+01 ; 1.315453e+02 ];

%-- Image #11:
omc_11 = [ -2.020336e+00 ; -1.429650e-02 ; -4.112296e-01 ];
Tc_11  = [ -8.526627e+02 ; -2.045490e+00 ; 1.431795e+03 ];
omc_error_11 = [ 4.739778e-02 ; 4.550232e-02 ; 8.341282e-02 ];
Tc_error_11  = [ 1.119119e+02 ; 6.418486e+01 ; 9.524227e+01 ];

%-- Image #12:
omc_12 = [ 1.488865e+00 ; 1.461210e+00 ; 1.028688e+00 ];
Tc_12  = [ -7.918597e+02 ; -1.870834e+02 ; 1.151936e+03 ];
omc_error_12 = [ 5.934013e-02 ; 6.454959e-02 ; 7.664009e-02 ];
Tc_error_12  = [ 9.135684e+01 ; 5.336108e+01 ; 9.703671e+01 ];

%-- Image #13:
omc_13 = [ -2.025432e+00 ; -1.889665e+00 ; 5.006002e-01 ];
Tc_13  = [ -2.934532e+02 ; -1.289886e+02 ; 1.330181e+03 ];
omc_error_13 = [ 5.024733e-02 ; 4.452978e-02 ; 9.125183e-02 ];
Tc_error_13  = [ 9.929323e+01 ; 5.277202e+01 ; 7.672216e+01 ];

%-- Image #14:
omc_14 = [ -2.078049e+00 ; -2.032300e+00 ; 7.816034e-01 ];
Tc_14  = [ -2.712394e+02 ; 5.364337e+01 ; 1.385082e+03 ];
omc_error_14 = [ 5.302676e-02 ; 4.707744e-02 ; 1.011974e-01 ];
Tc_error_14  = [ 1.038970e+02 ; 5.547939e+01 ; 7.767706e+01 ];

%-- Image #15:
omc_15 = [ -2.544995e+00 ; -1.176678e+00 ; -6.633479e-01 ];
Tc_15  = [ -1.221342e+03 ; -1.068034e+02 ; 1.633177e+03 ];
omc_error_15 = [ 8.672414e-02 ; 2.699572e-02 ; 1.407373e-01 ];
Tc_error_15  = [ 1.290093e+02 ; 7.699008e+01 ; 1.406396e+02 ];