{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"preamble": true
},
"source": [
"(Defining latex commands: not to be shown...)\n",
"$$\n",
"\\newcommand{\\norm}[1]{\\left \\| #1 \\right \\|}\n",
"\\DeclareMathOperator{\\minimize}{minimize}\n",
"\\newcommand{\\real}{\\mathbb{R}}\n",
"\\newcommand{\\normal}{\\mathcal{N}}\n",
"$$"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Gaussian Algebra (25 Points)\n",
"\n",
"Prove that the product of two univariate (scalar) Gaussian distributions is a Gaussian again, i.e. show, by explicitly performing the required arithmetic transformations, that\n",
"\n",
"\\begin{equation}\n",
" \\normal(x;\\mu,\\sigma^2)\\normal(x;m,s^2) = \\normal[x; (\\frac 1{\\sigma^2}+\\frac 1{s^2})^{-1}(\\frac \\mu{\\sigma^2}+\\frac m{s^2}),(\\frac 1{\\sigma^2}+\\frac 1{s^2})^{-1}]\\normal[m,\\mu,\\sigma^2+s^2].\n",
"\\end{equation}"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Maximum Likelihood Estimator of Simple Linear Regression (25 Points)\n",
"\n",
"Derive the formula $\\mathbf{w}_{MLE} = (X^TX)^{-1}X^T\\mathbf{y}$ from the lecture, by calculating the derivative of $p(\\mathbf{y}\\,|X,\\mathbf{w}) = \\normal(\\mathbf{y}\\,|X\\mathbf{w}, \\sigma^2I)$ with respect to $\\mathbf{w}$, setting it to zero and solving it for $\\mathbf{w}$.\n",
"\n",
"\n",
"Note: _To refresh your linear algebra you might find it useful to have a look in [here](http://webdav.tuebingen.mpg.de/lectures/ei-SS2015/pdfs/Murray_cribsheet.pdf)._"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Linear regression (50 Points)\n",
"\n",
"In this exercise you will perform a regression analysis on a toy dataset. You will implement ridge regression and learn how to find a good model through a comparative performance analysis.\n",
"\n",
"1) Download the [training set](http://webdav.tuebingen.mpg.de/lectures/ei-SS2015/data/ex1_train.csv)! <br>\n",
"2) Implement $\\mathbf{w}_{RIDGE}$ as a function of a given $X, \\mathbf{y}$ array and a regularization parameter $\\lambda$!"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"# Loading the required packages\n",
"%matplotlib inline\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"from IPython.html.widgets import interact"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false,
"scrolled": false
},
"outputs": [],
"source": [
"def wRidge(X,y,lamb):\n",
" # Change the following line and implement the ridge regression estimator wRidge\n",
" w = np.zeros(X.shape[-1])\n",
" return w"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"3) Load \"ex1_train.csv\" into a numpy array! The first column in the csv file is $X$ and the second column is $\\mathbf{y}$, assign them to each variable!"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"# Read ex1_train.csv and assign the first column and \n",
"# second column to variables x and y respectively."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"4) Plot the training data with appropriate labels on each axes!"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false,
"scrolled": false
},
"outputs": [],
"source": [
"# Plot the input data here"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"5) Implement a function which constructs features upto a input polynomial degree $d$!<br>\n",
"Note: _Constructing higher polynomial features is similar to what you implemented in Exercise 3 (SVM) of the previous exercise sheet._"
]
},
{
"cell_type": "code",
"execution_count": 68,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"def construct_poly(x,d):\n",
" ## Implement a method which given an array of size N, \n",
" ## returns an array of dimension (N,d)\n",
" return np.zeros((x.shape[0],d+x.shape[1]))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"6) Implement the Mean Squared Error Loss (MSE) as a function of the predicted and true values of the target variable! <br>"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"def MSE(y_predict,y_true):\n",
" ## Implement mean squared error for a given input y and its predictions.\n",
" return 0.0"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"7) By comparing the MSE find the degree $d$ for the polynomial that fits the training data best! You might find it useful to use the code below to interactively change the variable $d$, set $\\lambda = 1$ and keep it fixed. Plot the error as a function of different values of $d$!<br>"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false,
"scrolled": true
},
"outputs": [],
"source": [
"##This function provides an interactive mode to change polynomial degree. \n",
"@interact(n=[1,16])\n",
"def plot(n):\n",
" X = construct_poly(x,n)\n",
" w = wRidge(X,y,1.0)\n",
" plt.plot(x,X.dot(w))\n",
" plt.title(\"MSE %f\" % MSE(X.dot(w),y))\n",
" plt.plot(x,y)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"8) Apply models with different values of $d$ after being trained on the training dataset, to the test data available [here](http://webdav.tuebingen.mpg.de/lectures/ei-SS2015/data/ex1_test.csv). Compare the errors on the test data to the ones from the training by plotting the error curves as functions of the polynomial degree in a single plot! What do you conclude? <br>"
]
},
{
"cell_type": "code",
"execution_count": 82,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"array([[ 1.00000000e+02, 1.00000000e+01, 1.00000000e+00],\n",
" [ 1.00000000e+01, 1.00000000e+00, 1.00000000e-01],\n",
" [ 1.00000000e+00, 1.00000000e-01, 1.00000000e-02]])"
]
},
"execution_count": 82,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"A.T.dot(A)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"import scipy\n",
"from scipy import linalg\n",
"import numpy as np"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"1\n",
"[[ 9.80101960e-03 9.80101960e-04 9.80101960e-05]\n",
" [ 9.80101960e-04 9.80101960e-05 9.80101960e-06]\n",
" [ 9.80101960e-05 9.80101960e-06 9.80101960e-07]]\n",
"True\n"
]
}
],
"source": [
"A = np.array([[10,1,0.1],[10,1,0.2],[10,1.1,0.7]])\n",
"a = np.array([[10,1,0.1]])\n",
"A = a.T.dot(a)\n",
"\n",
"B,rank = linalg.pinv(A,return_rank=True)\n",
"print rank\n",
"print B\n",
"print np.allclose(A,A.dot(B.dot(A)))"
]
},
{
"cell_type": "code",
"execution_count": 67,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"## Read test data here"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"9) With a fixed optimal $d$, change the value of $\\lambda$ to one of the following values $[0.1, 1.0, 10.0]$ and find the minimum MSE!<br>"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Hand in printed copy of completed notebook."
]
}
],
"metadata": {
"annotations": {
"author": "",
"categories": [
"intelligent-systems-1-2015"
],
"date": "2015-04-30",
"location": "Beginning of next lecture",
"parent": "IS_SS2015",
"submission_date": "2015-05-07",
"subtitle": "Exercise Sheet 3, Linear Regression",
"tags": [
"IntelligenSystems",
"Course"
],
"title": "Intelligent Systems 1 - Summer Semester 2015"
},
"celltoolbar": "Edit Metadata",
"kernelspec": {
"display_name": "Python 2",
"language": "python",
"name": "python2"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.8"
}
},
"nbformat": 4,
"nbformat_minor": 0
}