function [xp,dxpdom,dxpdT,dxpdf,dxpdc,dxpdk,dxpdalpha] = project_points_fisheye(X,om,T,f,c,k,alpha)
%project_points2.m
%
%[xp,dxpdom,dxpdT,dxpdf,dxpdc,dxpdk] = project_points_fisheye(X,om,T,f,c,k,alpha)
%
%Projects a 3D structure onto the image plane of a fisheye camera.
%
%INPUT: X: 3D structure in the world coordinate frame (3xN matrix for N points)
% (om,T): Rigid motion parameters between world coordinate frame and camera reference frame
% om: rotation vector (3x1 vector); T: translation vector (3x1 vector)
% f: camera focal length in units of horizontal and vertical pixel units (2x1 vector)
% c: principal point location in pixel units (2x1 vector)
% k: Distortion fisheye coefficients (5x1 vector)
% alpha: Skew coefficient between x and y pixel (alpha = 0 <=> square pixels)
%
%OUTPUT: xp: Projected pixel coordinates (2xN matrix for N points)
% dxpdom: Derivative of xp with respect to om ((2N)x3 matrix)
% dxpdT: Derivative of xp with respect to T ((2N)x3 matrix)
% dxpdf: Derivative of xp with respect to f ((2N)x2 matrix if f is 2x1, or (2N)x1 matrix is f is a scalar)
% dxpdc: Derivative of xp with respect to c ((2N)x2 matrix)
% dxpdk: Derivative of xp with respect to k ((2N)x5 matrix)
%
%Definitions:
%Let P be a point in 3D of coordinates X in the world reference frame (stored in the matrix X)
%The coordinate vector of P in the camera reference frame is: Xc = R*X + T
%where R is the rotation matrix corresponding to the rotation vector om: R = rodrigues(om);
%call x, y and z the 3 coordinates of Xc: x = Xc(1); y = Xc(2); z = Xc(3);
%The pinehole projection coordinates of P is [a;b] where a=x/z and b=y/z.
%call r^2 = a^2 + b^2,
%call theta = atan(r),
%Fisheye distortion -> theta_d = theta * (1 + k(1)*theta^2 + k(2)*theta^4 + k(3)*theta^6 + k(4)*theta^8)
%
%The distorted point coordinates are: xd = [xx;yy] where:
%
%xx = (theta_d / r) * x
%yy = (theta_d / r) * y
%
%Finally, convertion into pixel coordinates: The final pixel coordinates vector xp=[xxp;yyp] where:
%
%xxp = f(1)*(xx + alpha*yy) + c(1)
%yyp = f(2)*yy + c(2)
%
%
%NOTE: About 90 percent of the code takes care fo computing the Jacobian matrices
%
%
%Important function called within that program:
%
%rodrigues.m: Computes the rotation matrix corresponding to a rotation vector
%
%rigid_motion.m: Computes the rigid motion transformation of a given structure
if nargin < 7,
alpha = 0;
if nargin < 6,
k = zeros(4,1);
if nargin < 5,
c = zeros(2,1);
if nargin < 4,
f = ones(2,1);
if nargin < 3,
T = zeros(3,1);
if nargin < 2,
om = zeros(3,1);
if nargin < 1,
error('Need at least a 3D structure to project (in project_points.m)');
return;
end;
end;
end;
end;
end;
end;
end;
[m,n] = size(X);
if nargout > 1,
[Y,dYdom,dYdT] = rigid_motion(X,om,T);
else
Y = rigid_motion(X,om,T);
end;
inv_Z = 1./Y(3,:);
x = (Y(1:2,:) .* (ones(2,1) * inv_Z)) ;
bb = (-x(1,:) .* inv_Z)'*ones(1,3);
cc = (-x(2,:) .* inv_Z)'*ones(1,3);
if nargout > 1,
dxdom = zeros(2*n,3);
dxdom(1:2:end,:) = ((inv_Z')*ones(1,3)) .* dYdom(1:3:end,:) + bb .* dYdom(3:3:end,:);
dxdom(2:2:end,:) = ((inv_Z')*ones(1,3)) .* dYdom(2:3:end,:) + cc .* dYdom(3:3:end,:);
dxdT = zeros(2*n,3);
dxdT(1:2:end,:) = ((inv_Z')*ones(1,3)) .* dYdT(1:3:end,:) + bb .* dYdT(3:3:end,:);
dxdT(2:2:end,:) = ((inv_Z')*ones(1,3)) .* dYdT(2:3:end,:) + cc .* dYdT(3:3:end,:);
end;
% Add fisheye distortion:
r2 = x(1,:).^2 + x(2,:).^2;
if nargout > 1,
dr2dom = 2*((x(1,:)')*ones(1,3)) .* dxdom(1:2:end,:) + 2*((x(2,:)')*ones(1,3)) .* dxdom(2:2:end,:);
dr2dT = 2*((x(1,:)')*ones(1,3)) .* dxdT(1:2:end,:) + 2*((x(2,:)')*ones(1,3)) .* dxdT(2:2:end,:);
end;
% Radial distance:
r = sqrt(r2);
if nargout > 1,
drdr2 = ones(1,length(r));
drdr2(r>1e-8) = 1 ./ (2*r(r>1e-8));
drdom = [ (drdr2').*dr2dom(:,1) (drdr2').*dr2dom(:,2) (drdr2').*dr2dom(:,3) ];
drdT = [ (drdr2').*dr2dT(:,1) (drdr2').*dr2dT(:,2) (drdr2').*dr2dT(:,3) ];
end;
% Angle of the incoming ray:
theta = atan(r);
if nargout > 1,
dthetadr = 1 ./ (1 + r2);
dthetadom = [ (dthetadr').*drdom(:,1) (dthetadr').*drdom(:,2) (dthetadr').*drdom(:,3) ];
dthetadT = [ (dthetadr').*drdT(:,1) (dthetadr').*drdT(:,2) (dthetadr').*drdT(:,3) ];
end;
% Add the fisheye distortion:
theta2 = theta.^2;
theta3 = theta2.*theta;
theta4 = theta2.^2;
theta5 = theta4.*theta;
theta6 = theta3.^2;
theta7 = theta6.*theta;
theta8 = theta4.*theta4;
theta9 = theta8.*theta;
% Fisheye distortion -> theta_d = theta * (1 + k(1)*theta2 + k(2)*theta4 + k(3)*theta6 + k(4)*theta8)
theta_d = theta + k(1)*theta3 + k(2)*theta5 + k(3)*theta7 + k(4)*theta9;
if nargout > 1,
dtheta_ddtheta = 1 + 3*k(1)*theta2 + 5*k(2)*theta4 + 7*k(3)*theta6 + 9*k(4)*theta8;
dtheta_ddom = [ (dtheta_ddtheta').*dthetadom(:,1) (dtheta_ddtheta').*dthetadom(:,2) (dtheta_ddtheta').*dthetadom(:,3) ];
dtheta_ddT = [ (dtheta_ddtheta').*dthetadT(:,1) (dtheta_ddtheta').*dthetadT(:,2) (dtheta_ddtheta').*dthetadT(:,3) ];
dtheta_ddk = [theta3' theta5' theta7' theta9'];
end;
% ratio:
inv_r = ones(1,length(r));
inv_r(r>1e-8) = 1./r(r>1e-8);
cdist = ones(1,length(r));
cdist(r > 1e-8) = theta_d(r > 1e-8) ./ r(r > 1e-8);
if nargout > 1,
dcdistdom = [ ((inv_r').*(dtheta_ddom(:,1) - (cdist').*drdom(:,1))) ((inv_r').*(dtheta_ddom(:,2) - (cdist').*drdom(:,2))) ((inv_r').*(dtheta_ddom(:,3) - (cdist').*drdom(:,3))) ];
dcdistdT = [ ((inv_r').*(dtheta_ddT(:,1) - (cdist').*drdT(:,1))) ((inv_r').*(dtheta_ddT(:,2) - (cdist').*drdT(:,2))) ((inv_r').*(dtheta_ddT(:,3) - (cdist').*drdT(:,3))) ];
dcdistdk = [ (inv_r'.*dtheta_ddk(:,1)) (inv_r'.*dtheta_ddk(:,2)) (inv_r'.*dtheta_ddk(:,3)) (inv_r'.*dtheta_ddk(:,4)) ];
end;
xd1 = x .* (ones(2,1)*cdist);
if nargout > 1,
dxd1dom = zeros(2*n,3);
dxd1dom(1:2:end,:) = (x(1,:)'*ones(1,3)) .* dcdistdom;
dxd1dom(2:2:end,:) = (x(2,:)'*ones(1,3)) .* dcdistdom;
coeff = (reshape([cdist;cdist],2*n,1)*ones(1,3));
dxd1dom = dxd1dom + coeff.* dxdom;
dxd1dT = zeros(2*n,3);
dxd1dT(1:2:end,:) = (x(1,:)'*ones(1,3)) .* dcdistdT;
dxd1dT(2:2:end,:) = (x(2,:)'*ones(1,3)) .* dcdistdT;
dxd1dT = dxd1dT + coeff.* dxdT;
dxd1dk = zeros(2*n,4);
dxd1dk(1:2:end,:) = (x(1,:)'*ones(1,4)) .* dcdistdk;
dxd1dk(2:2:end,:) = (x(2,:)'*ones(1,4)) .* dcdistdk;
end;
% No tangential distortion:
xd2 = xd1;
if nargout > 1,
dxd2dom = dxd1dom;
dxd2dT = dxd1dT;
dxd2dk = dxd1dk;
end;
% Add Skew:
xd3 = [xd2(1,:) + alpha*xd2(2,:);xd2(2,:)];
% Compute: dxd3dom, dxd3dT, dxd3dk, dxd3dalpha
if nargout > 1,
dxd3dom = zeros(2*n,3);
dxd3dom(1:2:2*n,:) = dxd2dom(1:2:2*n,:) + alpha*dxd2dom(2:2:2*n,:);
dxd3dom(2:2:2*n,:) = dxd2dom(2:2:2*n,:);
dxd3dT = zeros(2*n,3);
dxd3dT(1:2:2*n,:) = dxd2dT(1:2:2*n,:) + alpha*dxd2dT(2:2:2*n,:);
dxd3dT(2:2:2*n,:) = dxd2dT(2:2:2*n,:);
dxd3dk = zeros(2*n,4);
dxd3dk(1:2:2*n,:) = dxd2dk(1:2:2*n,:) + alpha*dxd2dk(2:2:2*n,:);
dxd3dk(2:2:2*n,:) = dxd2dk(2:2:2*n,:);
dxd3dalpha = zeros(2*n,1);
dxd3dalpha(1:2:2*n,:) = xd2(2,:)';
end;
% Pixel coordinates:
if length(f)>1,
xp = xd3 .* (f * ones(1,n)) + c*ones(1,n);
if nargout > 1,
coeff = reshape(f*ones(1,n),2*n,1);
dxpdom = (coeff*ones(1,3)) .* dxd3dom;
dxpdT = (coeff*ones(1,3)) .* dxd3dT;
dxpdk = (coeff*ones(1,4)) .* dxd3dk;
dxpdalpha = (coeff) .* dxd3dalpha;
dxpdf = zeros(2*n,2);
dxpdf(1:2:end,1) = xd3(1,:)';
dxpdf(2:2:end,2) = xd3(2,:)';
end;
else
xp = f * xd3 + c*ones(1,n);
if nargout > 1,
dxpdom = f * dxd3dom;
dxpdT = f * dxd3dT;
dxpdk = f * dxd3dk;
dxpdalpha = f .* dxd3dalpha;
dxpdf = xd3(:);
end;
end;
if nargout > 1,
dxpdc = zeros(2*n,2);
dxpdc(1:2:end,1) = ones(n,1);
dxpdc(2:2:end,2) = ones(n,1);
end;
return;
% Test of the Jacobians:
n = 10;
X = 10*randn(3,n);
om = randn(3,1);
T = [10*randn(2,1);40];
f = 1000*rand(2,1);
c = 1000*randn(2,1);
k = 0.5*randn(4,1);
alpha = 0.01*randn(1,1);
[x,dxdom,dxdT,dxdf,dxdc,dxdk,dxdalpha] = project_points_fisheye(X,om,T,f,c,k,alpha);
% Test on om: not OK
dom = 0.00000000001 * norm(om)*randn(3,1);
om2 = om + dom;
[x2] = project_points_fisheye(X,om2,T,f,c,k,alpha);
x_pred = x + reshape(dxdom * dom,2,n);
norm(x2-x)/norm(x2 - x_pred)
% Test on T: not OK
dT = 0.0001 * norm(T)*randn(3,1);
T2 = T + dT;
[x2] = project_points_fisheye(X,om,T2,f,c,k,alpha);
x_pred = x + reshape(dxdT * dT,2,n);
norm(x2-x)/norm(x2 - x_pred)
% Test on f: OK!!
df = 0.001 * norm(f)*randn(2,1);
f2 = f + df;
[x2] = project_points_fisheye(X,om,T,f2,c,k,alpha);
x_pred = x + reshape(dxdf * df,2,n);
norm(x2-x)/norm(x2 - x_pred)
% Test on c: OK!!
dc = 0.01 * norm(c)*randn(2,1);
c2 = c + dc;
[x2] = project_points_fisheye(X,om,T,f,c2,k,alpha);
x_pred = x + reshape(dxdc * dc,2,n);
norm(x2-x)/norm(x2 - x_pred)
% Test on k: OK!!
dk = 0.00001 * norm(k)*randn(4,1);
k2 = k + dk;
[x2] = project_points_fisheye(X,om,T,f,c,k2,alpha);
x_pred = x + reshape(dxdk * dk,2,n);
norm(x2-x)/norm(x2 - x_pred)
% Test on alpha: OK!!
dalpha = 0.001 * norm(k)*randn(1,1);
alpha2 = alpha + dalpha;
[x2] = project_points_fisheye(X,om,T,f,c,k,alpha2);
x_pred = x + reshape(dxdalpha * dalpha,2,n);
norm(x2-x)/norm(x2 - x_pred)