%go_calib_optim_iter_fisheye
%
%Main calibration function. Computes the intrinsic and extrinsic parameters.
%for fisheye cameras.
%Runs as a script.
%
%INPUT: x_1,x_2,x_3,...: Feature locations on the images
% X_1,X_2,X_3,...: Corresponding grid coordinates
%
%OUTPUT: fc: Camera focal length
% cc: Principal point coordinates
% alpha_c: Skew coefficient
% kc: Fisheye distortion coefficients
% KK: The camera matrix (containing fc and cc)
% omc_1,omc_2,omc_3,...: 3D rotation vectors attached to the grid positions in space
% Tc_1,Tc_2,Tc_3,...: 3D translation vectors attached to the grid positions in space
% Rc_1,Rc_2,Rc_3,...: 3D rotation matrices corresponding to the omc vectors
%
%Method: Minimizes the pixel reprojection error in the least squares sense over the intrinsic
% camera parameters, and the extrinsic parameters (3D locations of the grids in space)
%
%Note: If the intrinsic camera parameters (fc, cc, kc) do not exist before, they are initialized through
% the function init_intrinsic_param_fisheye.m. Otherwise, the variables in memory are used as initial guesses.
%
%Note: The row vector active_images consists of zeros and ones. To deactivate an image, set the
% corresponding entry in the active_images vector to zero.
%
%VERY IMPORTANT: This function works for 2D and 3D calibration rigs, except for init_intrinsic_param.m
%that is so far implemented to work only with 2D rigs.
%In the future, a more general function will be there.
%For now, if using a 3D calibration rig, quick_init is set to 1 for an easy initialization of the focal length
if ~exist('desactivated_images'),
desactivated_images = [];
end;
if exist('kc')
if length(kc) > 4,
clear kc;
end;
end;
if exist('est_dist')
if length(est_dist) > 4,
clear est_dist;
end;
end;
if ~exist('est_aspect_ratio'),
est_aspect_ratio = 1;
end;
if ~exist('est_fc');
est_fc = [1;1]; % Set to zero if you do not want to estimate the focal length (it may be useful! believe it or not!)
end;
if ~exist('recompute_extrinsic'),
recompute_extrinsic = 1; % Set this variable to 0 in case you do not want to recompute the extrinsic parameters
% at each iterstion.
end;
if ~exist('MaxIter'),
MaxIter = 30; % Maximum number of iterations in the gradient descent
end;
if ~exist('check_cond'),
check_cond = 1; % Set this variable to 0 in case you don't want to extract view dynamically
end;
if ~exist('center_optim'),
center_optim = 1; %%% Set this variable to 0 if your do not want to estimate the principal point
end;
%if exist('est_dist'),
% if length(est_dist) == 4,
% est_dist = [est_dist ; 0];
% end;
%end;
if ~exist('est_dist'),
est_dist = [1;1;1;1];
end;
if ~exist('est_alpha'),
est_alpha = 0; % by default, do not estimate skew
end;
% Little fix in case of stupid values in the binary variables:
center_optim = double(~~center_optim);
est_alpha = double(~~est_alpha);
est_dist = double(~~est_dist);
est_fc = double(~~est_fc);
est_aspect_ratio = double(~~est_aspect_ratio);
fprintf(1,'\n');
if ~exist('nx')&~exist('ny'),
fprintf(1,'WARNING: No image size (nx,ny) available. Setting nx=640 and ny=480. If these are not the right values, change values manually.\n');
nx = 640;
ny = 480;
end;
check_active_images;
quick_init = 0; % Set to 1 for using a quick init (necessary when using 3D rigs)
% Check 3D-ness of the calibration rig:
rig3D = 0;
for kk = ind_active,
eval(['X_kk = X_' num2str(kk) ';']);
if is3D(X_kk),
rig3D = 1;
end;
end;
if center_optim & (length(ind_active) < 2) & ~rig3D,
fprintf(1,'WARNING: Principal point rejected from the optimization when using one image and planar rig (center_optim = 1).\n');
center_optim = 0; %%% when using a single image, please, no principal point estimation!!!
est_alpha = 0;
end;
if ~exist('dont_ask'),
dont_ask = 0;
end;
if center_optim & (length(ind_active) < 5) & ~rig3D,
fprintf(1,'WARNING: The principal point estimation may be unreliable (using less than 5 images for calibration).\n');
%if ~dont_ask,
% quest = input('Are you sure you want to keep the principal point in the optimization process? ([]=yes, other=no) ');
% center_optim = isempty(quest);
%end;
end;
% A quick fix for solving conflict
if ~isequal(est_fc,[1;1]),
est_aspect_ratio=1;
end;
if ~est_aspect_ratio,
est_fc=[1;1];
end;
if ~est_aspect_ratio,
fprintf(1,'Aspect ratio not optimized (est_aspect_ratio = 0) -> fc(1)=fc(2). Set est_aspect_ratio to 1 for estimating aspect ratio.\n');
else
if isequal(est_fc,[1;1]),
fprintf(1,'Aspect ratio optimized (est_aspect_ratio = 1) -> both components of fc are estimated (DEFAULT).\n');
end;
end;
if ~isequal(est_fc,[1;1]),
if isequal(est_fc,[1;0]),
fprintf(1,'The first component of focal (fc(1)) is estimated, but not the second one (est_fc=[1;0])\n');
else
if isequal(est_fc,[0;1]),
fprintf(1,'The second component of focal (fc(1)) is estimated, but not the first one (est_fc=[0;1])\n');
else
fprintf(1,'The focal vector fc is not optimized (est_fc=[0;0])\n');
end;
end;
end;
if ~center_optim, % In the case where the principal point is not estimated, keep it at the center of the image
fprintf(1,'Principal point not optimized (center_optim=0). ');
if ~exist('cc'),
fprintf(1,'It is kept at the center of the image.\n');
cc = [(nx-1)/2;(ny-1)/2];
else
fprintf(1,'Note: to set it in the middle of the image, clear variable cc, and run calibration again.\n');
end;
else
fprintf(1,'Principal point optimized (center_optim=1) - (DEFAULT). To reject principal point, set center_optim=0\n');
end;
if ~center_optim & (est_alpha),
fprintf(1,'WARNING: Since there is no principal point estimation (center_optim=0), no skew estimation (est_alpha = 0)\n');
est_alpha = 0;
end;
if ~est_alpha,
fprintf(1,'Skew not optimized (est_alpha=0) - (DEFAULT)\n');
alpha_c = 0;
else
fprintf(1,'Skew optimized (est_alpha=1). To disable skew estimation, set est_alpha=0.\n');
end;
if ~prod(double(est_dist)),
fprintf(1,'Distortion not fully estimated (defined by the variable est_dist):\n');
end;
% Check 3D-ness of the calibration rig:
rig3D = 0;
for kk = ind_active,
eval(['X_kk = X_' num2str(kk) ';']);
if is3D(X_kk),
rig3D = 1;
end;
end;
% If the rig is 3D, then no choice: the only valid initialization is manual!
if rig3D,
quick_init = 1;
end;
alpha_smooth = 0.2; % set alpha_smooth = 1; for steepest gradient descent
% Conditioning threshold for view rejection
thresh_cond = 1e6;
%%% Initialization of the intrinsic parameters (if necessary)
if ~exist('cc'),
fprintf(1,'Initialization of the principal point at the center of the image.\n');
cc = [(nx-1)/2;(ny-1)/2];
alpha_smooth = 0.4; % slow convergence
end;
%if exist('kc'),
% if length(kc) == 4;
% fprintf(1,'Adding a new distortion coefficient to kc -> radial distortion model up to the 6th degree');
% kc = [kc;0];
% end;
%end;
if ~exist('alpha_c'),
fprintf(1,'Initialization of the image skew to zero.\n');
alpha_c = 0;
alpha_smooth = 0.4; % slow convergence
end;
if ~exist('fc')& quick_init,
fc = (max(nx,ny) / pi) * ones(2,1);
est_fc = [1;1];
alpha_smooth = 0.4; % slow
end;
if ~exist('fc'),
% Initialization of the intrinsic parameters:
fprintf(1,'Initialization of the Fisheye intrinsic parameters\n')
init_intrinsic_param_fisheye; % The right way to go (if quick_init is not active)!
alpha_smooth = 0.4; % slow convergence
est_fc = [1;1];
end;
if ~exist('kc'),
fprintf(1,'Initialization of the image distortion to zero.\n');
kc = zeros(4,1);
alpha_smooth = 0.4; % slow convergence
end;
if ~est_aspect_ratio,
fc(1) = (fc(1)+fc(2))/2;
fc(2) = fc(1);
end;
if ~prod(double(est_dist)),
% If no distortion estimated, set to zero the variables that are not estimated
kc = kc .* est_dist;
end;
if ~prod(double(est_fc)),
fprintf(1,'Warning: The focal length is not fully estimated (est_fc ~= [1;1])\n');
end;
%%% Initialization of the extrinsic parameters for global minimization:
comp_ext_calib_fisheye;
%%% Initialization of the global parameter vector:
init_param = [fc;cc;alpha_c;kc;zeros(6,1)];
for kk = 1:n_ima,
eval(['omckk = omc_' num2str(kk) ';']);
eval(['Tckk = Tc_' num2str(kk) ';']);
init_param = [init_param; omckk ; Tckk];
end;
%-------------------- Main Optimization:
fprintf(1,'\nMain calibration optimization procedure - Number of images: %d\n',length(ind_active));
param = init_param;
change = 1;
iter = 0;
fprintf(1,'Gradient descent iterations: ');
param_list = param;
while (change > 1e-6)&(iter < MaxIter),
fprintf(1,'%d...',iter+1);
% To speed up: pre-allocate the memory for the Jacobian JJ3.
% For that, need to compute the total number of points.
%% The first step consists of updating the whole vector of knowns (intrinsic + extrinsic of active
%% images) through a one step steepest gradient descent.
f = param(1:2);
c = param(3:4);
alpha = param(5);
k = param(6:9);
% Compute the size of the Jacobian matrix:
N_points_views_active = N_points_views(ind_active);
JJ3 = sparse([],[],[],15 + 6*n_ima,15 + 6*n_ima,126*n_ima + 225);
ex3 = zeros(15 + 6*n_ima,1);
for kk = ind_active, %1:n_ima,
%if active_images(kk),
omckk = param(15+6*(kk-1) + 1:15+6*(kk-1) + 3);
Tckk = param(15+6*(kk-1) + 4:15+6*(kk-1) + 6);
if isnan(omckk(1)),
fprintf(1,'Intrinsic parameters at frame %d do not exist\n',kk);
return;
end;
eval(['X_kk = X_' num2str(kk) ';']);
eval(['x_kk = x_' num2str(kk) ';']);
Np = N_points_views(kk);
if ~est_aspect_ratio,
[x,dxdom,dxdT,dxdf,dxdc,dxdk,dxdalpha] = project_points_fisheye(X_kk,omckk,Tckk,f(1),c,k,alpha);
dxdf = repmat(dxdf,[1 2]);
else
[x,dxdom,dxdT,dxdf,dxdc,dxdk,dxdalpha] = project_points_fisheye(X_kk,omckk,Tckk,f,c,k,alpha);
end;
exkk = x_kk - x;
A = [dxdf dxdc dxdalpha dxdk]';
B = [dxdom dxdT]';
JJ3(1:9,1:9) = JJ3(1:9,1:9) + sparse(A*A');
JJ3(15+6*(kk-1) + 1:15+6*(kk-1) + 6,15+6*(kk-1) + 1:15+6*(kk-1) + 6) = sparse(B*B');
AB = sparse(A*B');
JJ3(1:9,15+6*(kk-1) + 1:15+6*(kk-1) + 6) = AB;
JJ3(15+6*(kk-1) + 1:15+6*(kk-1) + 6,1:9) = (AB)';
ex3(1:9) = ex3(1:9) + A*exkk(:);
ex3(15+6*(kk-1) + 1:15+6*(kk-1) + 6) = B*exkk(:);
%JJ3(1:10,1:10) = JJ3(1:10,1:10) + sparse(A*A');
%JJ3(15+6*(kk-1) + 1:15+6*(kk-1) + 6,15+6*(kk-1) + 1:15+6*(kk-1) + 6) = sparse(B*B');
%AB = sparse(A*B');
%JJ3(1:10,15+6*(kk-1) + 1:15+6*(kk-1) + 6) = AB;
%JJ3(15+6*(kk-1) + 1:15+6*(kk-1) + 6,1:10) = (AB)';
%ex3(1:10) = ex3(1:10) + A*exkk(:);
%ex3(15+6*(kk-1) + 1:15+6*(kk-1) + 6) = B*exkk(:);
% Check if this view is ill-conditioned:
if check_cond,
JJ_kk = B'; %[dxdom dxdT];
if (cond(JJ_kk)> thresh_cond),
active_images(kk) = 0;
fprintf(1,'\nWarning: View #%d ill-conditioned. This image is now set inactive. (note: to disactivate this option, set check_cond=0)\n',kk)
desactivated_images = [desactivated_images kk];
param(15+6*(kk-1) + 1:15+6*(kk-1) + 6) = NaN*ones(6,1);
end;
end;
%end;
end;
% List of active images (necessary if changed):
check_active_images;
% The following vector helps to select the variables to update (for only active images):
selected_variables = [est_fc;center_optim*ones(2,1);est_alpha;est_dist;zeros(6,1);reshape(ones(6,1)*active_images,6*n_ima,1)];
if ~est_aspect_ratio,
if isequal(est_fc,[1;1]) | isequal(est_fc,[1;0]),
selected_variables(2) = 0;
end;
end;
ind_Jac = find(selected_variables)';
JJ3 = JJ3(ind_Jac,ind_Jac);
ex3 = ex3(ind_Jac);
JJ2_inv = inv(JJ3); % not bad for sparse matrices!!
% Smoothing coefficient:
alpha_smooth2 = 1-(1-alpha_smooth)^(iter+1); %set to 1 to undo any smoothing!
param_innov = alpha_smooth2*JJ2_inv*ex3;
param_up = param(ind_Jac) + param_innov;
param(ind_Jac) = param_up;
% New intrinsic parameters:
fc_current = param(1:2);
cc_current = param(3:4);
if center_optim & ((param(3)<0)|(param(3)>nx)|(param(4)<0)|(param(4)>ny)),
fprintf(1,'Warning: it appears that the principal point cannot be estimated. Setting center_optim = 0\n');
center_optim = 0;
cc_current = c;
else
cc_current = param(3:4);
end;
alpha_current = param(5);
kc_current = param(6:9);
if ~est_aspect_ratio & isequal(est_fc,[1;1]),
fc_current(2) = fc_current(1);
param(2) = param(1);
end;
% Change on the intrinsic parameters:
change = norm([fc_current;cc_current] - [f;c])/norm([fc_current;cc_current]);
%% Second step: (optional) - It makes convergence faster, and the region of convergence LARGER!!!
%% Recompute the extrinsic parameters only using compute_extrinsic.m (this may be useful sometimes)
%% The complete gradient descent method is useful to precisely update the intrinsic parameters.
if recompute_extrinsic,
MaxIter2 = 20;
for kk =ind_active, %1:n_ima,
%if active_images(kk),
omc_current = param(15+6*(kk-1) + 1:15+6*(kk-1) + 3);
Tc_current = param(15+6*(kk-1) + 4:15+6*(kk-1) + 6);
eval(['X_kk = X_' num2str(kk) ';']);
eval(['x_kk = x_' num2str(kk) ';']);
[omc_current,Tc_current] = compute_extrinsic_init_fisheye(x_kk,X_kk,fc_current,cc_current,kc_current,alpha_current);
[omckk,Tckk,Rckk,JJ_kk] = compute_extrinsic_refine_fisheye(omc_current,Tc_current,x_kk,X_kk,fc_current,cc_current,kc_current,alpha_current,MaxIter2,thresh_cond);
if check_cond,
if (cond(JJ_kk)> thresh_cond),
active_images(kk) = 0;
fprintf(1,'\nWarning: View #%d ill-conditioned. This image is now set inactive. (note: to disactivate this option, set check_cond=0)\n',kk);
desactivated_images = [desactivated_images kk];
omckk = NaN*ones(3,1);
Tckk = NaN*ones(3,1);
end;
end;
param(15+6*(kk-1) + 1:15+6*(kk-1) + 3) = omckk;
param(15+6*(kk-1) + 4:15+6*(kk-1) + 6) = Tckk;
%end;
end;
end;
param_list = [param_list param];
iter = iter + 1;
end;
fprintf(1,'done\n');
%%%--------------------------- Computation of the error of estimation:
fprintf(1,'Estimation of uncertainties...');
check_active_images;
solution = param;
% Extraction of the paramters for computing the right reprojection error:
fc = solution(1:2);
cc = solution(3:4);
alpha_c = solution(5);
kc = solution(6:9);
for kk = 1:n_ima,
if active_images(kk),
omckk = solution(15+6*(kk-1) + 1:15+6*(kk-1) + 3);%***
Tckk = solution(15+6*(kk-1) + 4:15+6*(kk-1) + 6);%***
Rckk = rodrigues(omckk);
else
omckk = NaN*ones(3,1);
Tckk = NaN*ones(3,1);
Rckk = NaN*ones(3,3);
end;
eval(['omc_' num2str(kk) ' = omckk;']);
eval(['Rc_' num2str(kk) ' = Rckk;']);
eval(['Tc_' num2str(kk) ' = Tckk;']);
end;
% Recompute the error (in the vector ex):
comp_error_calib_fisheye;
sigma_x = std(ex(:));
% Compute the size of the Jacobian matrix:
N_points_views_active = N_points_views(ind_active);
JJ3 = sparse([],[],[],15 + 6*n_ima,15 + 6*n_ima,126*n_ima + 225);
for kk = ind_active,
omckk = param(15+6*(kk-1) + 1:15+6*(kk-1) + 3);
Tckk = param(15+6*(kk-1) + 4:15+6*(kk-1) + 6);
eval(['X_kk = X_' num2str(kk) ';']);
Np = N_points_views(kk);
%[x,dxdom,dxdT,dxdf,dxdc,dxdk,dxdalpha] = project_points2(X_kk,omckk,Tckk,fc,cc,kc,alpha_c);
if ~est_aspect_ratio,
[x,dxdom,dxdT,dxdf,dxdc,dxdk,dxdalpha] = project_points_fisheye(X_kk,omckk,Tckk,fc(1),cc,kc,alpha_c);
dxdf = repmat(dxdf,[1 2]);
else
[x,dxdom,dxdT,dxdf,dxdc,dxdk,dxdalpha] = project_points_fisheye(X_kk,omckk,Tckk,fc,cc,kc,alpha_c);
end;
A = [dxdf dxdc dxdalpha dxdk]';
B = [dxdom dxdT]';
JJ3(1:9,1:9) = JJ3(1:9,1:9) + sparse(A*A');
JJ3(15+6*(kk-1) + 1:15+6*(kk-1) + 6,15+6*(kk-1) + 1:15+6*(kk-1) + 6) = sparse(B*B');
AB = sparse(A*B');
JJ3(1:9,15+6*(kk-1) + 1:15+6*(kk-1) + 6) = AB;
JJ3(15+6*(kk-1) + 1:15+6*(kk-1) + 6,1:9) = (AB)';
end;
JJ3 = JJ3(ind_Jac,ind_Jac);
JJ2_inv = inv(JJ3); % not bad for sparse matrices!!
param_error = zeros(6*n_ima+15,1);
param_error(ind_Jac) = 3*sqrt(full(diag(JJ2_inv)))*sigma_x;
solution_error = param_error;
if ~est_aspect_ratio & isequal(est_fc,[1;1]),
solution_error(2) = solution_error(1);
end;
%%% Extraction of the final intrinsic and extrinsic paramaters:
extract_parameters_fisheye;
fprintf(1,'done\n');
fprintf(1,'\n\nCalibration results after optimization (with uncertainties):\n\n');
fprintf(1,'Focal Length: fc = [ %3.5f %3.5f ] ± [ %3.5f %3.5f ]\n',[fc;fc_error]);
fprintf(1,'Principal point: cc = [ %3.5f %3.5f ] ± [ %3.5f %3.5f ]\n',[cc;cc_error]);
fprintf(1,'Skew: alpha_c = [ %3.5f ] ± [ %3.5f ] => angle of pixel axes = %3.5f ± %3.5f degrees\n',[alpha_c;alpha_c_error],90 - atan(alpha_c)*180/pi,atan(alpha_c_error)*180/pi);
fprintf(1,'Fisheye Distortion: kc = [ %3.5f %3.5f %3.5f %3.5f ] ± [ %3.5f %3.5f %3.5f %3.5f ]\n',[kc;kc_error]);
fprintf(1,'Pixel error: err = [ %3.5f %3.5f ]\n\n',err_std);
fprintf(1,'Note: The numerical errors are approximately three times the standard deviations (for reference).\n\n\n')
%fprintf(1,' For accurate (and stable) error estimates, it is recommended to run Calibration once again.\n\n\n')
return;