diff --git a/ex10/31.png b/ex10/31.png new file mode 100644 index 0000000..3462059 --- /dev/null +++ b/ex10/31.png Binary files differ diff --git a/ex10/32.png b/ex10/32.png new file mode 100644 index 0000000..5961a67 --- /dev/null +++ b/ex10/32.png Binary files differ diff --git a/ex10/33.png b/ex10/33.png new file mode 100644 index 0000000..47d3cfe --- /dev/null +++ b/ex10/33.png Binary files differ diff --git a/ex10/kn10.pdf b/ex10/kn10.pdf index 5fde2de..f0b2fbf 100644 --- a/ex10/kn10.pdf +++ b/ex10/kn10.pdf Binary files differ diff --git a/ex10/kn10.tex b/ex10/kn10.tex index 0a57ca3..2dd7b48 100644 --- a/ex10/kn10.tex +++ b/ex10/kn10.tex @@ -87,7 +87,7 @@ \begin{document} %\header{BlattNr}{Tutor}{Abgabedatum}{Vorlesungsname}{Namen}{Semester}{Anzahl Aufgaben} -\header{10}{}{2016-01-13}{Kommunikationsnetze}{\textit{Jonas Jaszkowic, 3592719}\\\textit{Jan-Peter Hohloch, 3908712}}{WS 15/16}{4} +\header{10}{}{2016-01-13}{Kommunikationsnetze}{\textit{Jan-Peter Hohloch, 3908712}\\\textit{Jonas Jaszkowic, 3592719}}{WS 15/16}{4} \vspace{1cm} \Aufgabe{Token Bucket}{10+10} \begin{enumerate} @@ -134,7 +134,6 @@ %TODO: Quellen \end{enumerate}\pagebreak \Aufgabe{Wi-Fi - CSMA/CA, RTS/CTS}{10+10+10} -%TODO: labeled figure \begin{enumerate} \item Time to transmit one packet and receiving the acknowledgement: \begin{align*} @@ -143,7 +142,8 @@ &= \frac{12}{11} \cdot 10^{-3}s + 0.112 \cdot 10^{-3}s \\ &= 1.203 ms \end{align*} - The maximum throuput $D_1$ in $bit/s$ is therefore: + \includegraphics[width=.5\textwidth]{31.png}\\ + The maximum throughput $D_1$ in $bit/s$ is therefore: \begin{align*} D_1 = (1 / 1.203 ms) * (12000~bit + 112~bit) = 10.07 \cdot 10^{6} bit/s \end{align*} @@ -154,6 +154,7 @@ &= 1573 \mu s \\ &= 1.573 ms \end{align*} + \includegraphics[width=.5\textwidth]{32.png}\\ The average throughput $D_2$ in $bit/s$ is therefore: \begin{align*} D_2 = (1 / 1.573 ms) * (12000 + 112 bit) = 7.70 \cdot 10^{6} bit/s @@ -165,6 +166,7 @@ &= 292 \mu s + 1573 \mu s \\ &= 1.865 ms \end{align*} + \includegraphics[width=.5\textwidth]{33.png}\\ The maximum throughput $D_3$ in $bit/s$ is therefore: \begin{align*} D_3 = (1 / 1.865 ms) * (12000 + 112 + 160 + 112) = 6.640 \cdot 10^{6} bit/s