diff --git a/07_final_assignment/paper/main.tex b/07_final_assignment/paper/main.tex index f16255e..6ba1638 100644 --- a/07_final_assignment/paper/main.tex +++ b/07_final_assignment/paper/main.tex @@ -55,11 +55,12 @@ In other words, the maximum possible performance is no longer 1.0 (for a very intelligent monkey) but rather restricted by $ r $. If a monkey's performance is slightly better than $ p_{max} $, this is assured to be due to chance. \subsubsection{Alpha and Beta} Both $ \alpha $ and $ \beta $ were our independent variables which we manipulated over the course of the experiments. We gathered data for every possible combination of $ \alpha $ and $ \beta $ values within an equally spaced range from 0.0 to 0.3. A total of 15 values for each $ \alpha $ and $ \beta $ were combined to $ 15*15 = 225 $ possible combinations. Since $ \alpha $ and $ \beta $ were internally multiplied to a single value, we expected the outcome to be symmetrical due to the commutativity of the multiplication operation and therefore calculated each combination of $ \alpha $ and $ \beta $ only once, which we used as a trick to improve the overall runtime. Therefore, $\sum_{i=1}^{15}i = 120$ combinations remained to be explored. -\subsubsection{Lambda} \todo{Choice of $ \lambda $} -%TODO explain choice of lambda=1, saliency +\subsubsection{Lambda} +The independent variable $\lambda$ represents the maximum activation in the Rescorla-Wagner model and therefore limits the learning. +It makes it possible to modulate saliency of a stimulus. A more salient stimulus could not only have higher learning rates but also a higher maximum activation. In the original experiment the stimulus were same colored words and nonwords with four letters on a equally colored background. We assume the single words and nonwords are equally salient and keep therefore $\lambda$ constant (1). \subsection{Running Parallelized Experiments} -Running an experiment with a single combination of $ \alpha $ and $ \beta $ on a normal desktop computer took about 75 minutes. Therefore, the parameter space one could explore within a reasonable amount of time was quite restricted. We decided to write a parallelized version of the code to reduce the overall runtime. Using the R packages foreach, parallel and doParallel \toco{(TODO: Cite them properly)}, we restructured the experiment. Since conflicts can easily occur when more than one core is trying to access a shared data structure at the same time, we implemented a parallelized version that is able to run without even containing critical sections. Instead, each thread has its own data structure, a .txt file, and in the end the results are harvested and combined. This version of the experiment ran on a cluster with 15 cores, each performing a total amount of eight experiments. Altogether, 120 combinations of $ \alpha $ and $ \beta $ were explored overnight, which would have taken about 150 hours in a non-parallelized version. +Running an experiment with a single combination of $ \alpha $ and $ \beta $ on a normal desktop computer took about 75 minutes. Therefore, the parameter space one could explore within a reasonable amount of time was quite restricted. We decided to write a parallelized version of the code to reduce the overall runtime. Using the R packages foreach, parallel and doParallel \todo{(TODO: Cite them properly)}, we restructured the experiment. Since conflicts can easily occur when more than one core is trying to access a shared data structure at the same time, we implemented a parallelized version that is able to run without even containing critical sections. Instead, each thread has its own data structure, a .txt file, and in the end the results are harvested and combined. This version of the experiment ran on a cluster with 15 cores, each performing a total amount of eight experiments. Altogether, 120 combinations of $ \alpha $ and $ \beta $ were explored overnight, which would have taken about 150 hours in a non-parallelized version. \section{Results} \todo{results}