diff --git a/07_final_assignment/.RData b/07_final_assignment/.RData index 7478cef..3c7c07c 100644 --- a/07_final_assignment/.RData +++ b/07_final_assignment/.RData Binary files differ diff --git a/07_final_assignment/baboonSimulation.R b/07_final_assignment/baboonSimulation.R index 5dd6d77..d010c0d 100644 --- a/07_final_assignment/baboonSimulation.R +++ b/07_final_assignment/baboonSimulation.R @@ -525,7 +525,7 @@ mat1 = matrix(rexp(15*15, rate=.1), ncol=15, nrow=15) -conditions <- c("GeneralAccuracy", "WordAccuracy", "NonwordAccuracy") +conditions <- c("NumWordsLearned") for(c in conditions) { image.plot(x=sort(aseq), @@ -558,6 +558,7 @@ + ### WordAccuracy m1.w = gam(WordAccuracy ~ s(alpha) + s(beta), data=data) summary(m1.w) @@ -568,6 +569,9 @@ compareML(m1.w, m2.w) #m1 preferred +vis.gam(m1.w, plot.type="contour", color="topo", main="WordAccuracy") + + ### NonwordAccuracy m1.n = gam(NonwordAccuracy ~ s(alpha) + s(beta), data=data) @@ -602,6 +606,10 @@ #note: this plot shows a model which is not justified because m2 is preferred. #it still is interesting, though. +#explains the rather strange gam fit +hist(data$NumWordsLearned, main="Histogram of NumWordsLearned", + xlab="NumWordsLearned") + ### model criticism qqnorm(m1.g$residuals) diff --git a/07_final_assignment/plots/plot_accuracy.pdf b/07_final_assignment/plots/plot_accuracy.pdf new file mode 100644 index 0000000..bdfd8c8 --- /dev/null +++ b/07_final_assignment/plots/plot_accuracy.pdf Binary files differ diff --git a/07_final_assignment/plots/plot_numwords.pdf b/07_final_assignment/plots/plot_numwords.pdf new file mode 100644 index 0000000..206e3c0 --- /dev/null +++ b/07_final_assignment/plots/plot_numwords.pdf Binary files differ